SITE PLAN REVIEW

6/14/21 Plan Commission Meeting

Ivee's At Main / Dave Iverson

Village Planner Report

Germantown, Wisconsin

Summary

Timothy Wiberg, architect and agent for David Iverson, property owner, is seeking approval for site development and building plans to replace and extend the existing patio canopy for the existing restaurant located at W157 N11618 Fond du Lac Avenue.

Property Location:

W157 N11618 Fond du Lac Avenue

Property Owners/

Agent:

Timothy Wiberg Wiberg Architecture 1865 Kelly Lane Brookfield, WI David Iverson Ivee's At Main W157 N11618 FDL Ave Germantown, WI 53022

Current Zoning: B-3: General Business

Adjace	Adjacent Land Uses							
North	Residential	B-3						
South	Commercial	B-3						
East	Commercial	B-3						
West	Commercial	B-3						

Site Plan Review

Proposal

Timothy Wiberg, architect and agent for David Iverson, property owner, is seeking approval for site development and building plans to replace and extend the existing patio canopy for the existing restaurant located at W157 N11618 Fond du Lac Avenue.

As described and shown in the attached the following improvements are proposed:

- Remove existing fabric awning and support structure over ½ of the existing 15' x 37.5' concrete patio (225 sqft of the total 562.5 sqft);
- Install permanent canopy over entire 562.5 sqft patio comprised of tube steel and wood framing with a fiberglass shingle or metal standing seam roof

No other building or site improvements are proposed.

Staff Comments

Planning & Zoning

The proposed parking lot expansion and building renovations meet the B-3 Zoning District regulations including required setbacks, impervious area, and other restrictions.

Public Works/Engineering No comment.

Fire/Police Department No comment.

Water/Wastewater Utilities No comment.

<u>Highway</u> <u>Department</u> No comment.

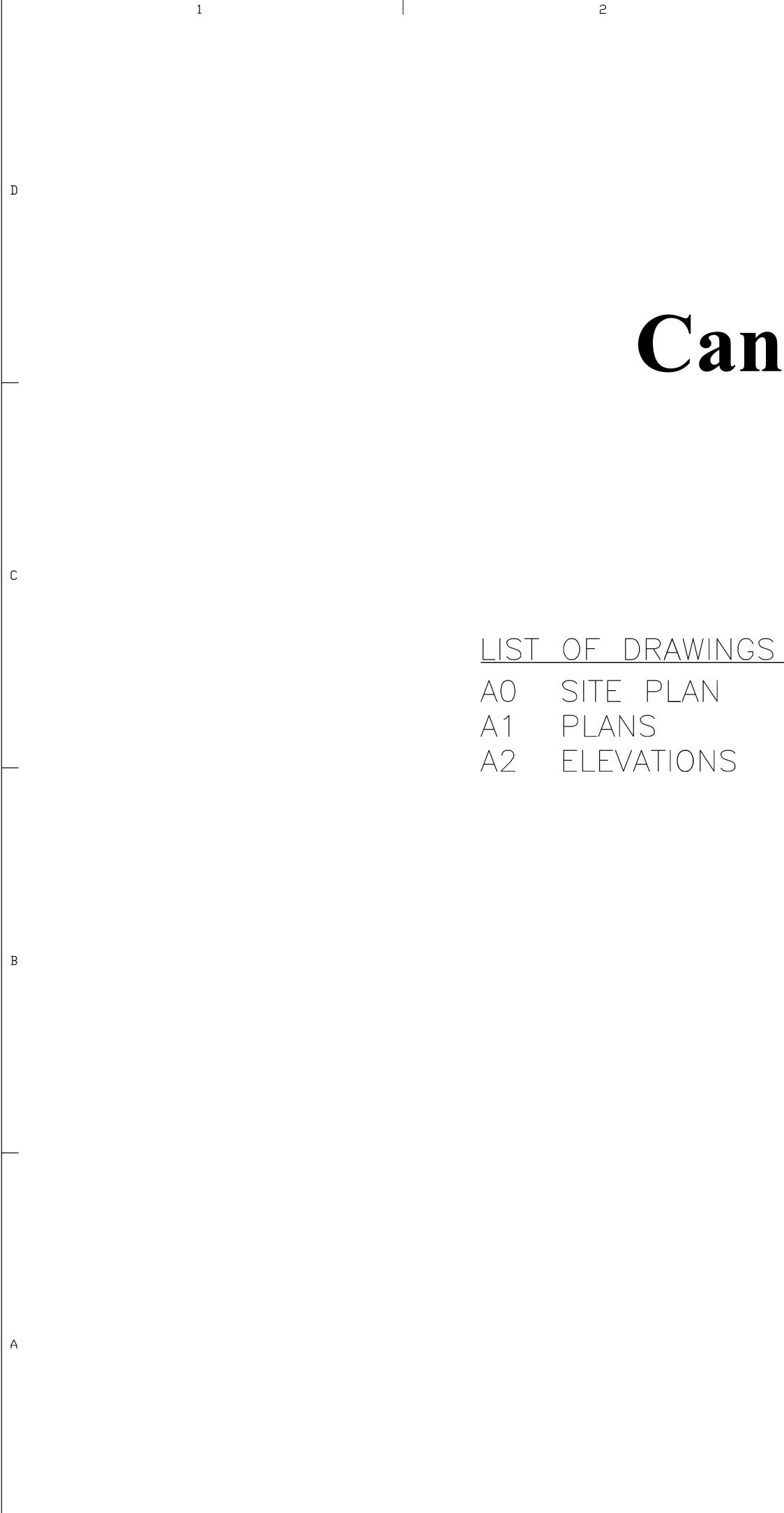
Building Inspection Services

The Building Inspector has indicated that the submission of state-approved building plans for the new canopy roof will NOT be required prior to issuing a building permit. Plan review will be conducted in-house as part of the permitting process.

Village Planner Recommendation

APPROVE the site development and building plans for the proposed patio canopy for lvee's restaurant located at W157 N11618 Fond du Lace Avenue subject to the following conditions:

1. Approval is for the site development and building plan set dated March 3, 2021 (unless otherwise revised by a subsequent plan set approved by the Village Planner pursuant to revisions required herein).


-	Village of Bermantofon 		 \$700 Mind \$1,240 Con: \$2,095 Con \$3,460 Indu \$3,460 Corr \$200 Plan \$125 Fire PAID 	company application or Addition struction <10,000 SF struction 10,000 SF to 50,000 strial Construction >50,000 imercial Construction >50,000 Commission Consultation Department Plan Review 	SF
	SITE PLAN R Pursuant to Se	EVIEW	APPLICAT	ION	
	Please read and complete this application			t be signed and dated.	
1	APPLICANT OR AGENT		ROPERTY OWNER		
	WIBERC ARCHITECTURE	414 _	DAVE IVER		
	1865 KELLY LANE	<u> </u>		E KUTOMOTIVE	
	BROOKFIELD, WI 53045			BS, INC. DBL MXIN	
	Phone (162) - 780 - 5193		WIST NICH CERMANTOWN, none (122) SO2	B FOUD DU CLE, WI, 53022	LVE.
2	E-Mail <u>Wibergarchitecture @ sbcg</u> PROPERTY ADDRESS WIST NIIGIB FOND E	lobal.net E	Mail DAVE SS6370	DOADL.COM	
3	NEIGHBORING USES - Specify name and typ	e of use, e.g. En	viro Tech - Industrial, Smit	h ~ Residential etc	
	RESIDENT South		East FLAGCO.	West TAUERN	
4	READ AND INITIAL THE FOLLOWING: TW I am aware of the Village of Germanto TW I understand that all new development before building permits will be issued.	wn ordinance r is subject to Im	equiring fire sprinklers	in most new construction.	
5	TW I understand that an incomplete application that all resubmissions to the Plan Corr	ition will be with imission are su	ndrawn from the Plan C bject to a new applicati	Commission agenda and on fee.	
-	SIGNATURES - ALL APPLICATION MUST	BE SIGNED B	Y OWNER!		
	TIMOTHY P. HIBSRE X1/2 Applicant P. HIBSRE X1/2 Date	Owner	Ane	1. Sh 4/15/21 Date	,

Date

From: tim wiberg <timwiberg@sbcglobal.net>
Sent: Monday, April 26, 2021 2:28 PM
To: Lori Johnson ljohnson@village.germantown.wi.us>
Subject: Re: Ivee's Site Plan Review

The owner would like to remove the existing fabric awning that covers half the outdoor patio and replace it with a permanent fixed canopy that covers the whole patio. This will allow outdoor dining without worrying about rain or excessive heat.

Timothy P. Wiberg AIA Wiberg Architecture

Canopy Replacement

3

<u>OWNER</u>:

NORTHRIDGE AUTOMOTIVE ENTERPRISES, INC. DBA IVEE'S AT MAIN W157 N11618 FOND DU LAC AVENUE GERMANTOWN, WI 53022 PHONE: 262.502.0484

<u>ARCHITECT</u>: TIMOTHY P. WIBERG AIA WIBERG ARCHITECTURE 1865 KELLY LANE BROOKFIELD, WI 53045 PHONE: 262.780.5198

<u>ENGINEER</u>: MICHAEL BLODGETT, PE BLODGETT ENGINEERING LLC W169 N10815 REDWOOD LANE GERMANTOWN, WI 53022 REMONTRACZIO2R 293.9923 TBD

PROJECT DESCRIPTION: CANOPY REPLACEMENT

BUILDING TYPE: 2015 IEBC CHAPTER 10 ADDITION & 2015 IBC

OCCUPANCY TYPE: A-2 ASSEMBLY (RESTAURANT)

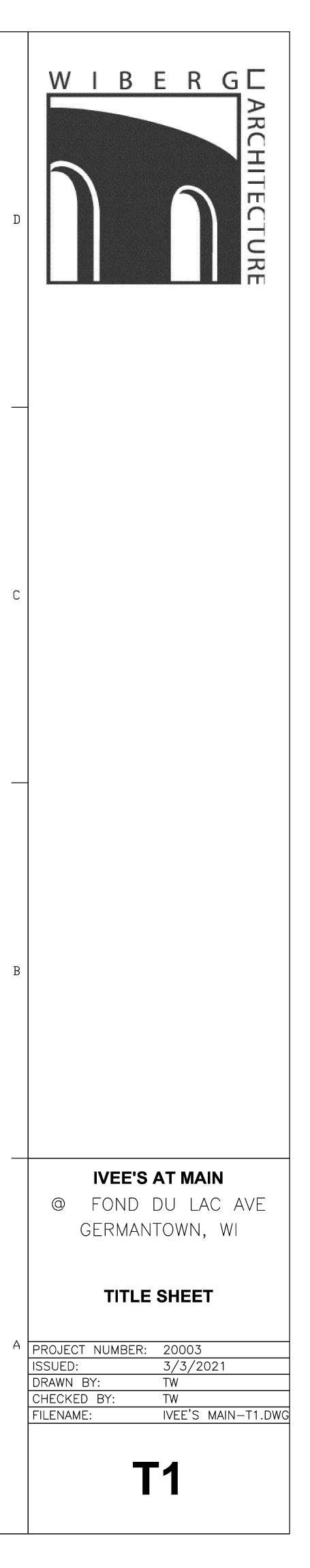
TOTAL OUTDOOR PROJECT SPACE: 562 SQ. FT.

CONSTRUCTION CLASS: TYPE IIB - NON-SPRINKLERED

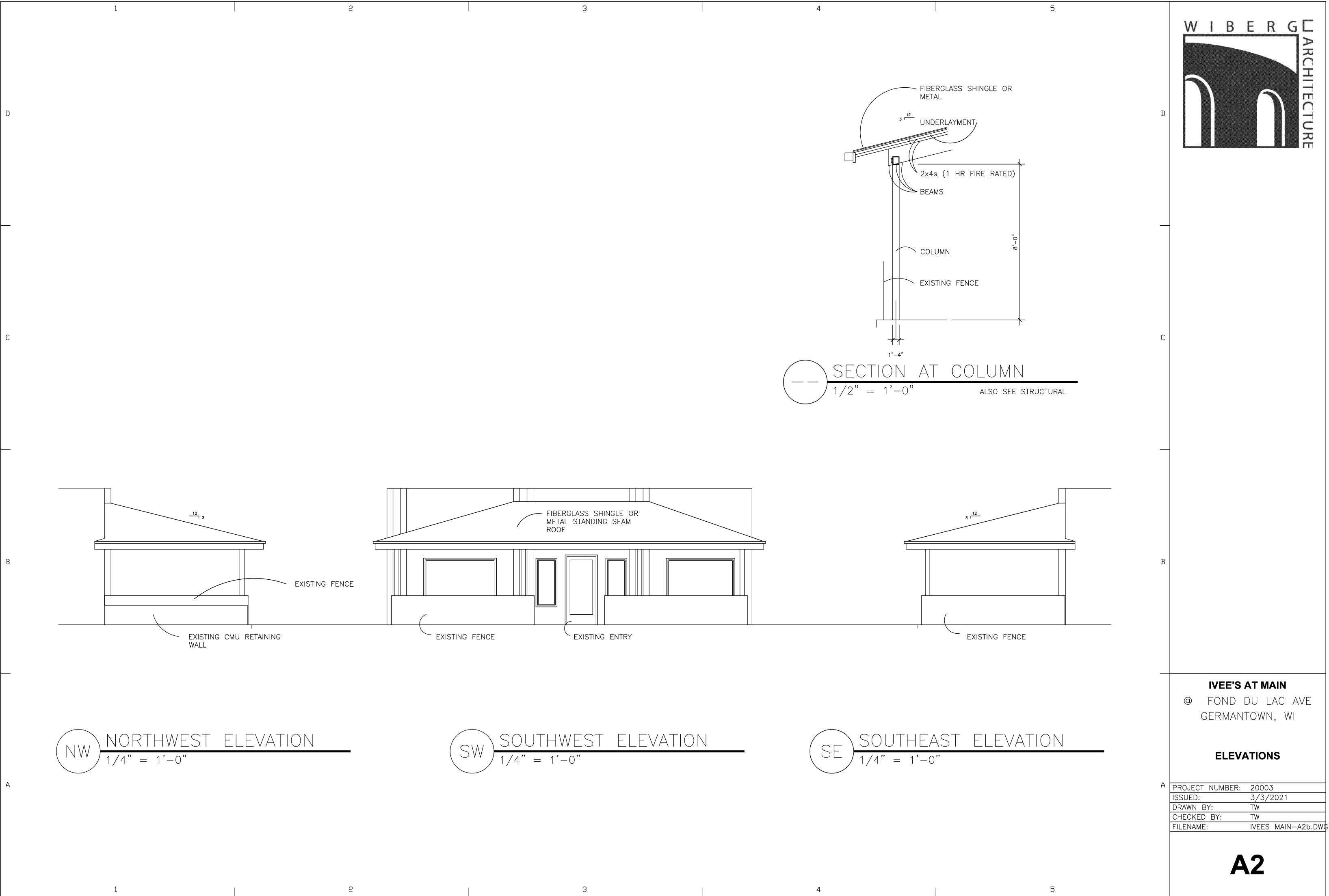
LEVELS/STORIES: ONE

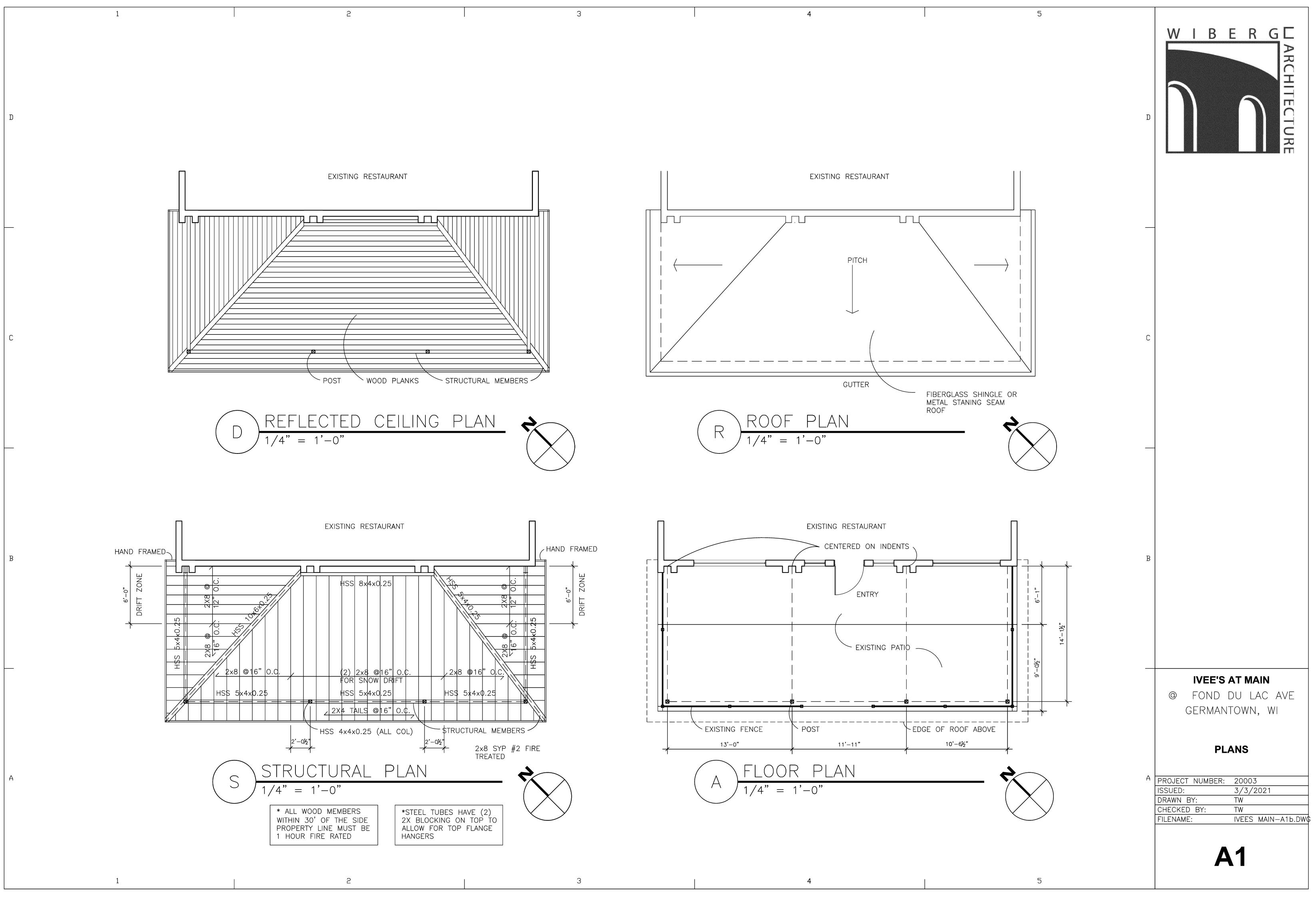
TOTAL BUILDING HEIGHT: LESS THAN 55 FEET

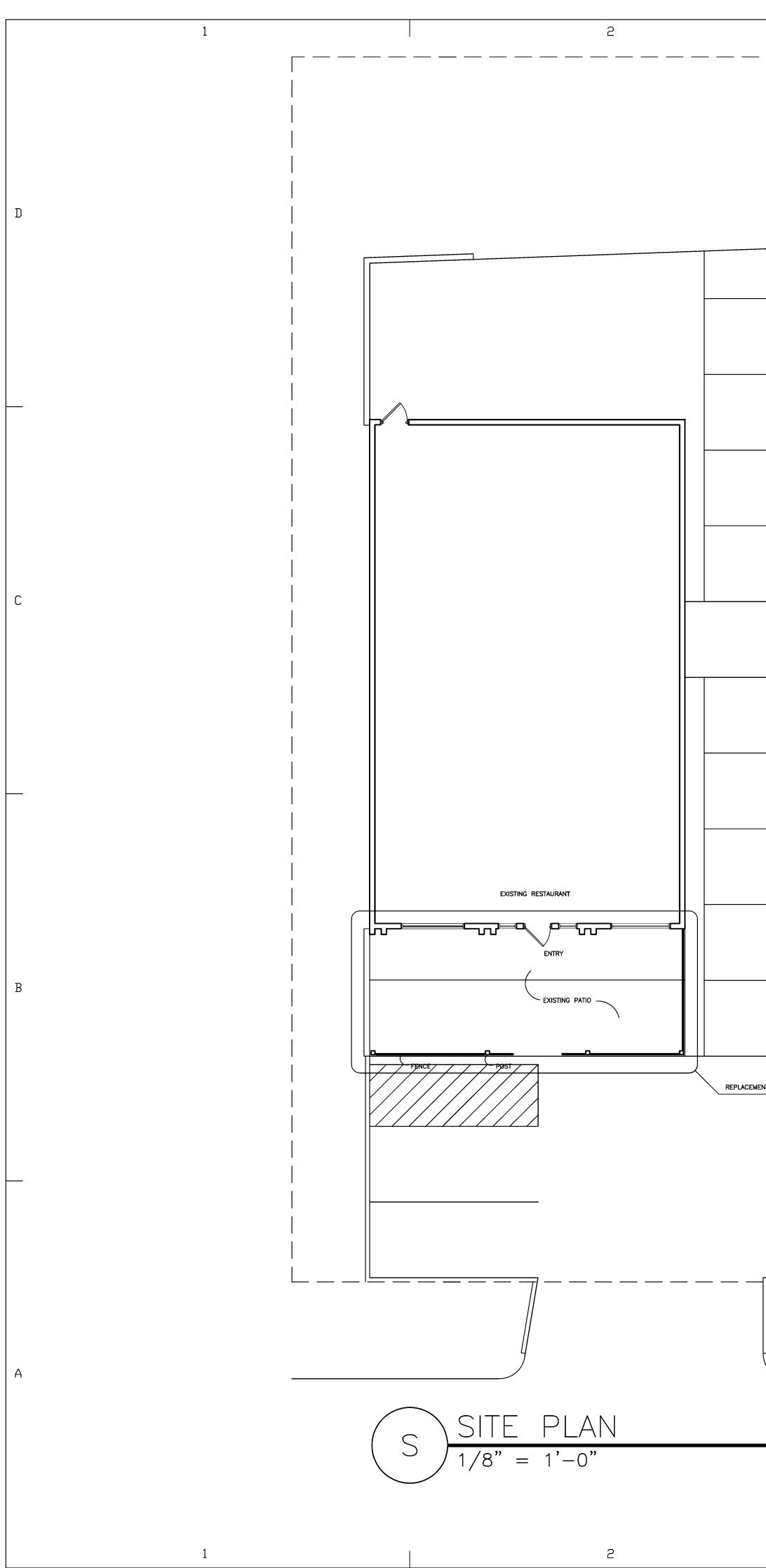
<u>SPRINKLER SYSTEM</u>: NONE

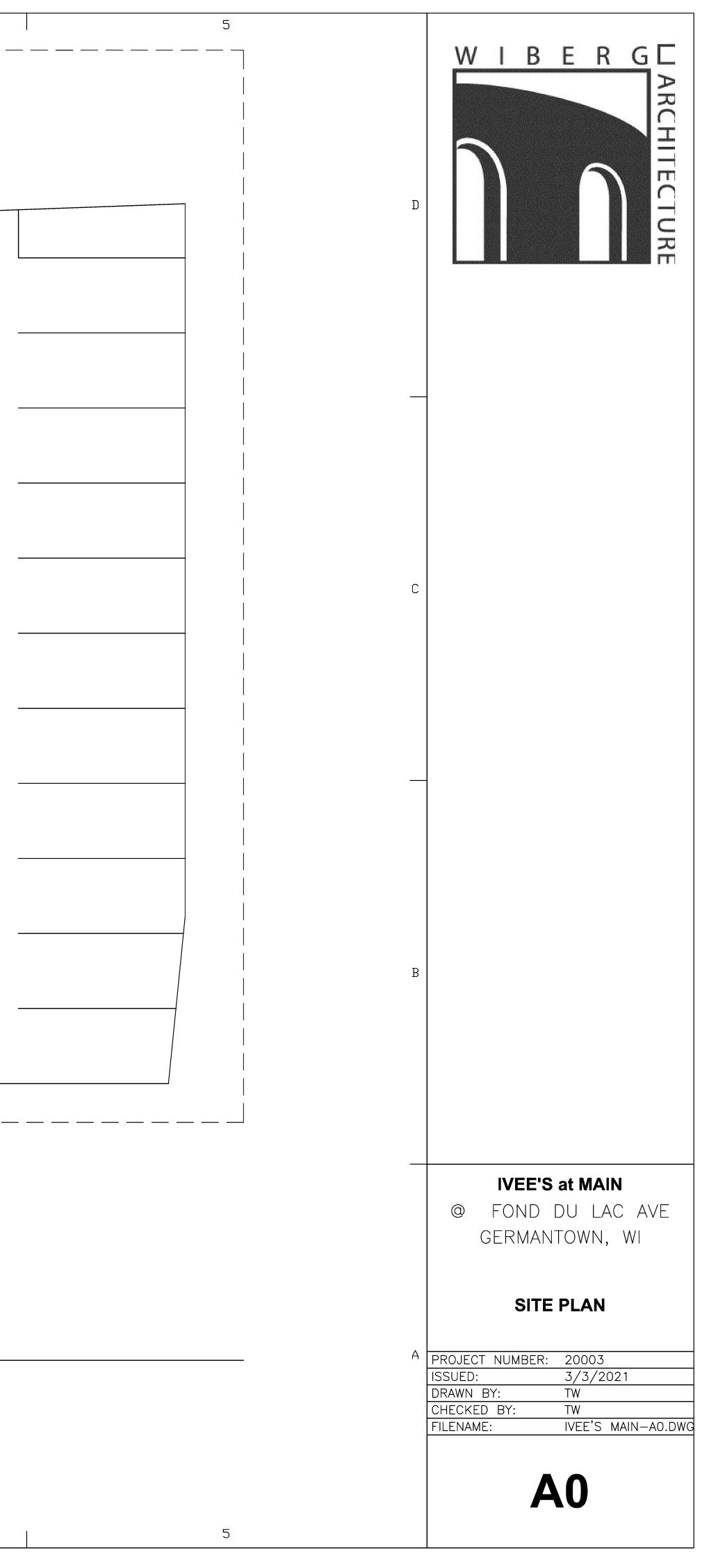

OCCUPANT LOAD: NO CHANGE

MEANS OF EGRESS: NO CHANGE IN NUMBER OF PEOPLE, SIZE OR LOCATIONS OF EXITS


PLUMBING FIXTURES: ON FIRST FLOOR - NO CHANGE IN SIZE OF SEATING AREA

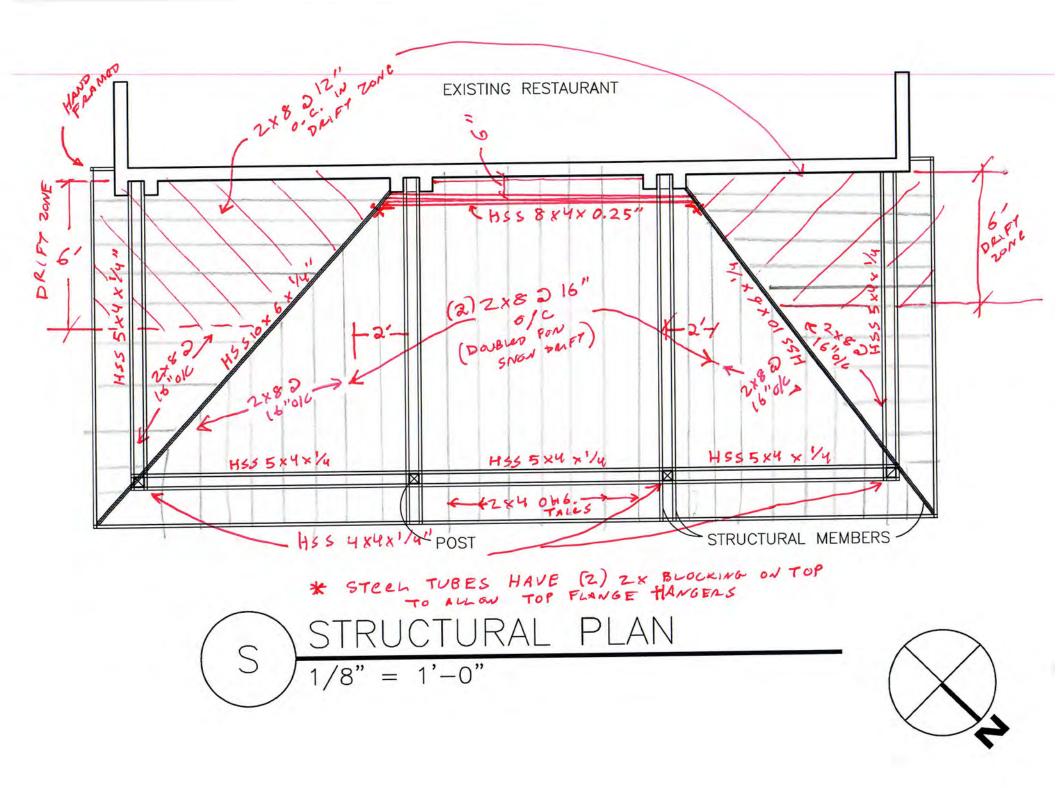

4


2


5

	3			4
				-
				-
				-
				-
				-
				-
				-
				-
		EXI	ISTING PARKING	
MENT CANOPY				
			<u> </u>	
Ĺ	ļ			
	3			4

January 20, 2021


Ivee's on Main Germantown, WI

STRUCTURAL CALCULATIONS FOR Outdoor Canopy

Provided for:

STRUCTURAL CONSULTING ENGINEERS

W169 N10815 Redwood Lane Germantown, WI 53022 blodgetteng@wi.rr.com Tel/Fax: 262.293.9923

OB	WIBERG -	IV	EE.	s
00_			68	-

SHEET NO._

CALCULATED BY_____M @ B

_____OF_

____ DATE_ 10/26/2020

LOADS: -36 ----Pg = 30 psf DL= 15psF PS = 25.2psF For CANOPY DRIFT LOADS: 70'+ WINDWALD PRIFTS: NO DRIFT AT TOP A=1.5' A=5' 19.3 PSF AT BOTTOM (A=5') DRIFT . LECWARD PRIFTS: pd=52.9 psf 65= 11.83 & CONTROLS PT= 78,1 = TOTAL SNOW W/DRIFT SIDE BEAM: 14-3" SPAN WD = (13' + 2') 10 PSF = 85 p/F AT MAX Wp = (21) 15psF = 30plF WS = 25.2 × (2+2)= 126 plf AT START OF W5 = 25,2 psF x 2 = 50.4 p/F 1 WSD = 52.9 psf x (=+2) = 264.5 NF WSD = SZ, 9 PSF × (10 +2)= 370.3 plF USE: HSS5 XY X 1/4 (SOKST MIN)

Pf = 0.7*Ce*Ct*I*Pg

Sloped-roof Factor

Balanced Snow Load

Unobstructed Slippery Surface

Rain on Snow Surcharge Angle

Code Maximum Rain Surcharge

Rain on Snow Surcharge

Ps plus rain surcharge

Minimum Snow Load

Cs =

Ps =

-

=

-

Pm =

21.0 psf

no

1.00

21.0 psf

0.72 deg

5.0 psf

0.0 psf

21.0 psf

20.0 psf

21.0 psf

20.0 psf

25.2 psf

25.2 psf

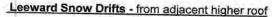
0.72 deg

5.0 psf

0.0 psf

25.2 psf

20.0 psf


25.2 psf

yes

1.00

Blodgett Engineering W169 N10815 Redwood Lane		JOB TITLE Ivee's at I	
Germantown, WI 53022 262-293-9923		JOB NO. CALCULATED BY CHECKED BY	SHEET NO. DATE DATE
Snow Loads - from adjacent bu	uilding or roof:	ASCE 7-10	Nominal Snow Forces
Roof slope Horiz. eave to ridge dist (W) Roof length parallel to ridge (L) Projection height (roof step) h Building separation s	= 70.0 ft =	Lower Roof 3.00 / 12 = 14.0 deg 36.0 ft 16.3 ft 5.0 ft 0.0 ft	
Type of Roof	Monoslope	Monoslope	
Ground Snow Load Pg	Provide the second second second second	30.0 psf	
Risk Category	= 11		
Importance Factor	= 1.0	1.0	
Thermal Factor Ct		1.20	
Exposure Factor Ce		1.0	

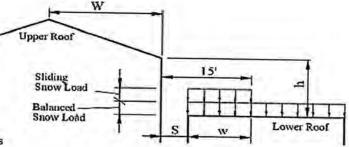
NOTE: Alternate spans of continuous beams and other areas shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code.

Uniform Roof Design Snow Load =

Building Official Minimum

Upper roof length	lu =	70.0 ft
Snow density	¥ =	17.9 pcf
Balanced snow height	hb =	1.41 ft
	hc =	3.59 ft
hc/hb >0.2 = 2.6	Therefore, d	esign for drift
Adj structure factor	=	1.00
Drift height (hd)	-	2.96 ft
Drift width	w =	11.83 ft
Surcharge load:	$pd = \gamma^*hd =$	52.9 psf
Balanced Snow load:	=	25.2 psf

Lu Surcharge Load Due to Drifting hc hd pd Balanced Snow Load hb 78.1 psf Leeward drift controls


Windward Snow Drifts - from low roof against high roof

Lower roof length	lu =	16.3 ft
Adj structure factor		1.00
Drift height	hd =	1.08 ft
Drift width	w =	4.31 ft
Surcharge load:	$pd = y^*hd =$	19.3 psf
Balanced Snow load		25.2 psf
		44 5 psf

Sliding Snow - onto lower roof

ł

0.0 plf
0.0 psf
1.41 ft
0.0 psf
25.2 psf
25.2 psf

Sliding snow not required since upper roof slope is 1/4 in 12 or less

Blodgett Engineering

W169 N10815 Redwood Lane

Germantown, WI 53022 262-293-9923

Snow Loads : ASCE 7-10

Roof slope	=	14.0 deg	
Horiz. eave to ridge dist (W	() =	15.0 ft	
Roof length parallel to ridge (L	.) =	36.0 ft	
Type of Roof		Monoslope	
Ground Snow Load Po		30.0 psf	
Risk Category	=	00.0 por	
Importance Factor	=	1.0	
Thermal Factor C	=	1.20	
Exposure Factor Ce	=	1.0	
Pf = 0.7*Ce*Ct*I*Pg		25.2 psf	
Unobstructed Slippery Surface		yes	
Sloped-roof Factor Cs	-	1.00	
Balanced Snow Load	=	25.2 psf	
Rain on Snow Surcharge Angle Code Maximum Rain Surcharge		0.30 deg 5.0 psf	
Rain on Snow Surcharge	=	0.0 psf	
Ps plus rain surcharge	-	25.2 psf	
Minimum Snow Load Pm	=	20.0 psf	
Uniform Roof Design Snow Load	=	25.2 psf	

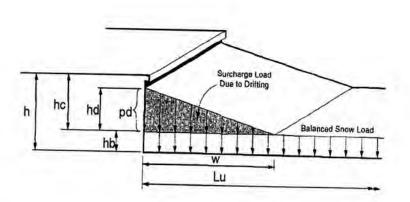
JOB TITLE Ivee's at Main

JOB NO.

CALCULATED BY

CHECKED BY

SHEET NO.


DATE

DATE

Near ground level surface balanced snow load = 30.0 psf

NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs..

Upwind fetch	lu =	16.3 ft
Projection height	h =	
Snow density	g =	
Balanced snow heig	ht hb =	
	hd =	
	hc =	
hc/hb <0.2 = 0.1	Therefore,	
Drift height (hc)	=	0.00 ft
Drift width	w =	0.74 ft
Surcharge load:	pd = y*hd =	0.0 psf
Balanced Snow load	l: =	25.2 psf
the second se		
Vindward Snow Drifts 2 -	Against walls n	25.2 psf
Vindward Snow Drifts 2 -		arapets, etc
Upwind fetch	lu =	arapets, etc 16.3 ft
Upwind fetch Projection height	lu = h =	arapets, etc 16.3 ft 5.0 ft
Upwind fetch Projection height Snow density	lu = h = a =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf
Upwind fetch Projection height	lu = h = g = ht hb =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft
Upwind fetch Projection height Snow density	lu = h = g = ht hb = hd =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft 1.08 ft
Upwind fetch Projection height Snow density Balanced snow heigi	lu = h = g = ht hb = hd = hc =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft 1.08 ft 3.59 ft
Upwind fetch Projection height Snow density Balanced snow heigh hc/hb >0.2 = 2.6	lu = h = g = ht hb = hd = hc =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft 1.08 ft 3.59 ft design for drift
Upwind fetch Projection height Snow density Balanced snow heigi hc/hb >0.2 = 2.6 Drift height (hd)	lu = h = g = ht hb = hd = hc =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft 1.08 ft 3.59 ft
Upwind fetch Projection height Snow density Balanced snow heigi hc/hb >0.2 = 2.6 Drift height (hd) Drift width	lu = h = g = ht hb = hd = hc = Therefore, = w =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft 1.08 ft 3.59 ft design for drift 1.08 ft 4.31 ft
Upwind fetch Projection height Snow density Balanced snow heigi hc/hb >0.2 = 2.6 Drift height (hd) Drift width Surcharge load:	lu = h = g = ht hb = hd = hc = Therefore, = w = pd = γ*hd =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft 1.08 ft 3.59 ft design for drift 1.08 ft
Projection height Snow density Balanced snow heigi hc/hb >0.2 = 2.6 Drift height (hd) Drift width	lu = h = g = ht hb = hd = hc = Therefore, = w = pd = γ*hd =	arapets, etc 16.3 ft 5.0 ft 17.9 pcf 1.41 ft 1.08 ft 3.59 ft design for drift 1.08 ft 4.31 ft

Germantown, WI

VITRUVIUS CUST PROJECT LOC	TOMER:	1/18/202 Base Wiberg A	l Architecture	COMPANY: DESIGNED BY: REVIEWED BY:	Blodgett Engineering Michael Blodgett Michael Blodgett	
LEVEL: LOCATION: TYPE: MATERIAL:		, Roof Side Beam - Steel FLOOR BEAM STEEL		LOADING: CODE: AISC:	2015 International Building Cod	
HSS Rectangular	HSS5x-	4x.250	A500 Gr.C-50			

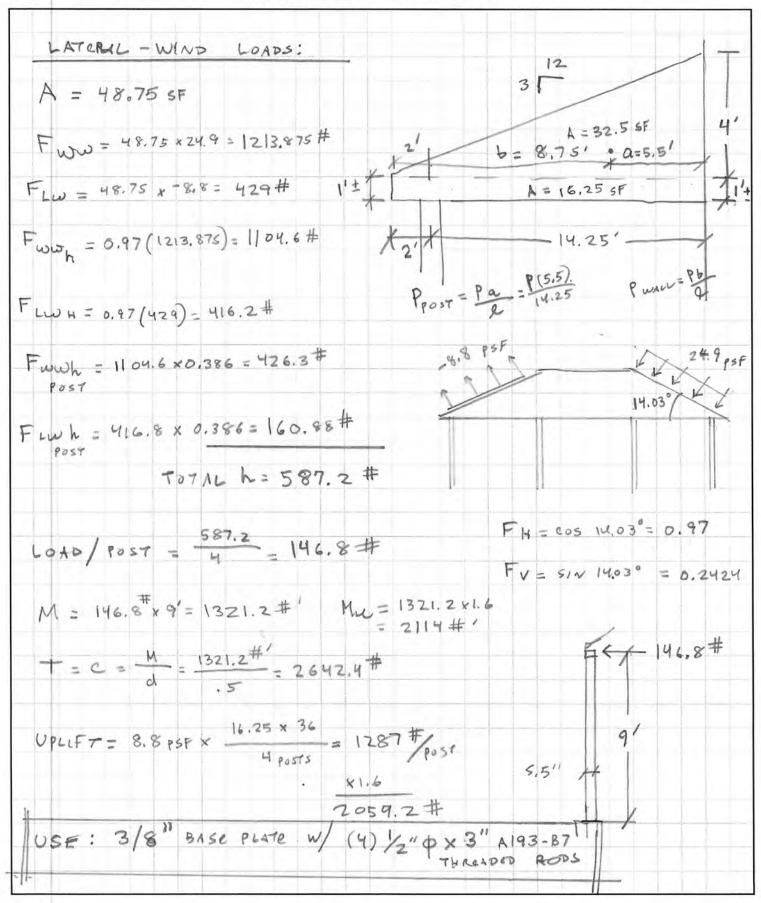
the second se												
2								al an	ALC: NO			8
												60
	PROPERTI		200 C 10			_						
tart (ft):	0 End (ft): 14.	25 Me	mber Slope: 0/12	Actual Len	gth (ft): 14.25							
Es x10	³ Fy:	x10 ³	Fu x10 ³	Area	b		ly		Zx	Zy	J	Cw
(psi)	(p	osi)	(psi)	(in ²)	(in	4)	(in ⁴)		n³)	(in ³)	(in ⁴)	(in ⁶)
29000	0 5	50	62	3.84	13.	.4	9.46	1	.49	5.57	18	0
DESIG	N PROPER	TIES	/									
Lp	Lr		Flange	Web	Flange		Web					
(in)	(in)		Flexure	Flexure	Compressio	on	Compression	Cv	Cv_WA			
152	4043		Compact	Compact	Non-Slend		Non-Slender		1			
BEAM	DATA											
	a state of some of	Unbr	aced Length	Beam End								
pan	Length	Тор	Bottom	Elev. Diff	Pnt/и	Pnc/v	мп/и	Mn-OOP	/и Vn/и	Vn-OOP/и	СЬ	Cb-OOP
1	14.25	0	14.25	0	0	0	16.19		36	46.13	1.156	1
PASS-	FAIL							1.1.4		10.15	1.150	
			PASS/FAIL	MA	GNITUDE		CTRENCTU					
	Shear Force	(lbf)	PASS (93.5%)		2340.6		STRENGTH		TION (ft)	AISC COD	E	LOAD COMBO
100	Moment Y (Contraction of the local division of the loc	PASS (60.6%)		5382.4		35996.4 16192.6		14.25	F7-1		D+S
	Deflectio	and the second	PASS (11.9%)) (=L/409)	0.	475 (=L/360)		8.55 7.55	G2-1 (Ref G	i5)	D+S
REACT		its for V	16.6 11-16- 6 8		(4)		++5 (=L/500)		1.55			S
		LIVE						1000				
	443		LIVE ROOF	SNOW	WIND +		WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
-	443 574	0	0	866	0		0	0	0	0	0	0
		0	0	1766	0		0	0	0	0	0	0

A LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Trapezoidal (lbf/ft)	30	85	0	14.25	Dead	v
Trapezoidal (lbf/ft)	50.4	126	0	8.25	Snow	v
Trapezoidal (lbf/ft)	264.5	370.3	8.25	14.25	Snow	v
Self Weight (lbf/ft)	13.91	13.91	0	14.25	Dead	Y

NOTES

Page 1

STRUCTURAL CONSULTING ENGINEERS


W169 N10815 Redwood Lane Germantown, WI 53022 blodgetteng@wi.rr.com Tel/Fax: 262.293.9923 JOB___

SHEET NO.

CALCULATED BY

DATE

OF

Blodgett Engineering W169 N10815 Redwood Lane Germantown, WI 53022

262-293-9923

JOB TITLE Ivee's at Main Germantown, WI JOB NO. SHEET NO. CALCULATED BY DATE CHECKED BY DATE

Wind Loads - Open Buildings: 0.25 ≤ h/L ≤ 1.0

Type of roof = Pitched Free Roofs Wind Flow = Clear

G = 0.85 Roof Angle = 14.0 deg

Main Wind Force Resisting System

Kz = Kh (case 2) = 0.85

Base pressure (qh) =

NOTE: The code requires the MWFRS be designed for a minimum pressure of 16 psf. 26.6 psf

Ultimate Wind Pressures

Roof pressures - Wind Normal to Ridge

Wind Flow	Load Case		Wind Dir ¥ = 0 & 1	2, 2, 29, 29, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
TIOW	Case	-	Cnw	Cnl
		Cn =	1.10	-0.39
Clear Wind	^	p =	+ 24.9 psf	-8.8 psf
Flow	В	Cn =	0.11	-1.11
	U	p =	+ 2.6 psf	-25.2 psf

NOTE: 1). Cnw and Cnl denote combined pressures from top and bottom roof surfaces.

2). Cnw is pressure on windward half of roof. Cnl is pressure on leeward half of roof.

3). Positive pressures act toward the roof. Negative pressures act away from the roof.

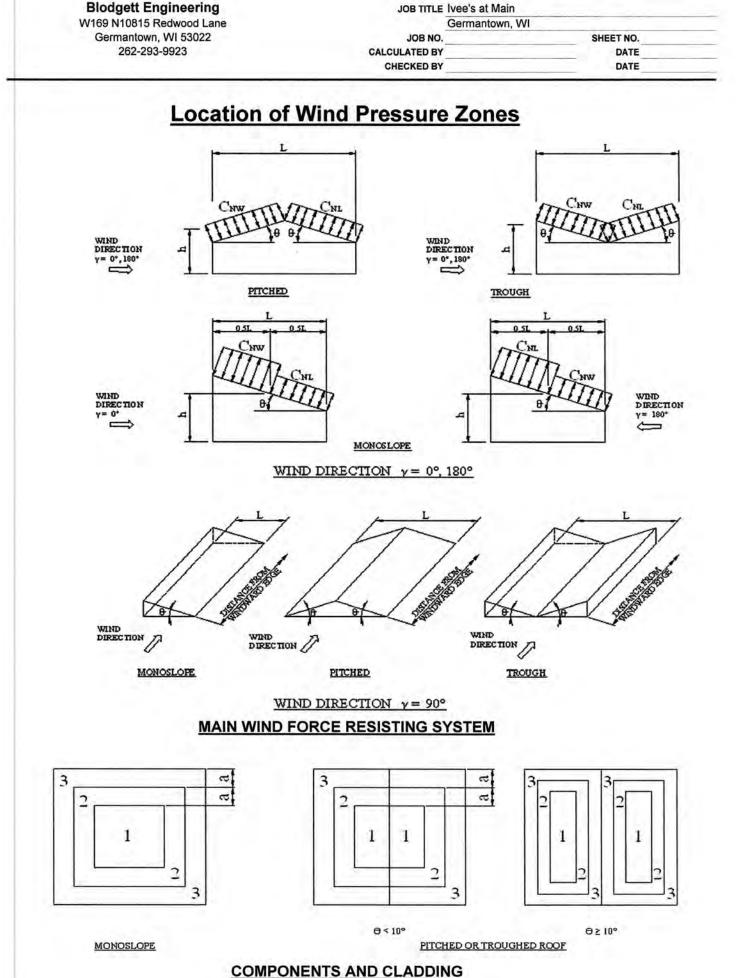
Roof pressures - Wind Parallel to Ridge, ¥ = 90 deg

Wind Flow	Load Case	11.1	Horizontal D	istance from Edge	Windward	h=	12.0 ft
TIOW	Case		≤h	>h ≤ 2h	> 2h	2h =	24.0 ft
1	^	Cn =	-0.80	-0.60	-0.30		4.04.0
Clear Wind	A	p =	-18.1 psf	-13.6 psf	-6.8 psf		
Flow	в	Cn =	0.80	0.50	0.30		
	5	p =	18.1 psf	11.3 psf	6.8 psf		

Fascia Panels -Horizontal pressures

qp =0.0 psf Windward fascia: Leeward fascia: Fascia pressures not applicable - roof angle exceeds 5 degrees. 0.0 psf (GCpn = +1.5) 0.0 psf (GCpn = -1.0)

Components & Cladding - roof pressures


Kz = Kh (case 1) =	0.85
Base pressure (qh) =	26.6 psf
G =	0.85

psf 0.85

a = 3.0 ft

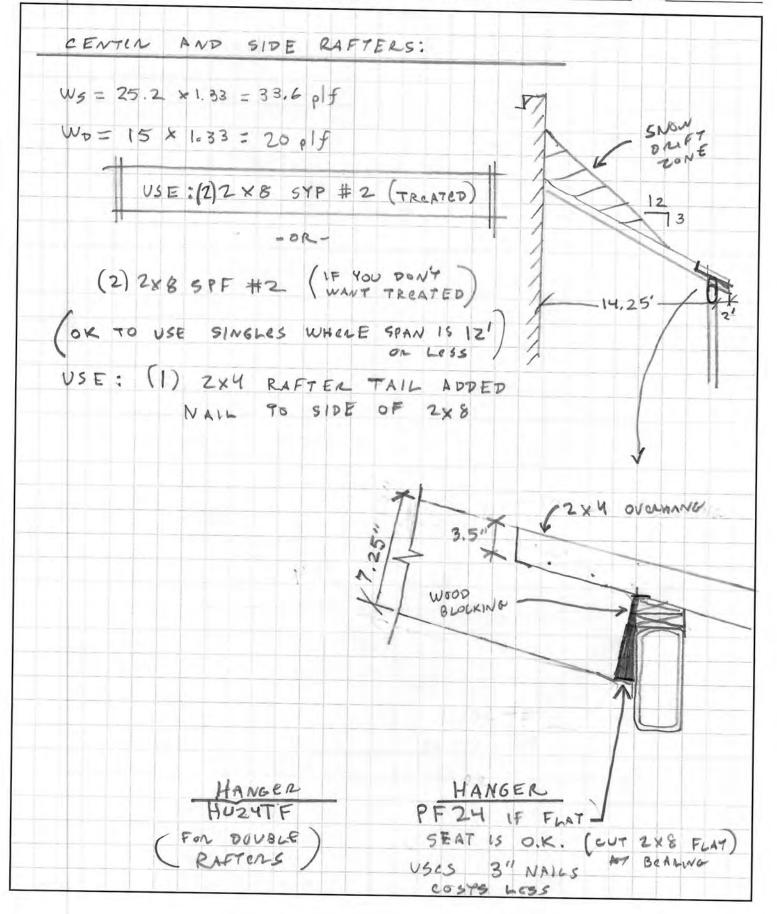
 $a^2 = 9.0 \, sf$ $4a^2 = 36.0 \, sf$

	Concern and the second			Clear W	ind Flow		
	Effective Wind Area	ZOI	zone 3		zone 2		ne 1
	A CONTRACTOR OF A CONTRACTOR	positive	negative	positive	negative	positive	negative
A Part I	≤ 9 sf	2.20	-2.38	1.70	-1.71	1.10	-1.11
CN	>9, ≤ 36 sf	1.70	-1.71	1.70	-1.71	1.10	-1.11
	> 36 sf	1.10	-1.11	1.10	-1.11	1.10	-1.11
Wind	≤ 9 sf	49.7 psf	-53.8 psf	38.4 psf	-38.7 psf	24.9 psf	-25.2 psf
pressure	>9, ≤ 36 sf	38.4 psf	-38.7 psf	38.4 psf	-38.7 psf	24.9 psf	-25.2 psf
pressure	> 36 sf	24.9 psf	-25.2 psf	24.9 psf	-25.2 psf	24.9 psf	-25.2 psf

STRUCTURAL CONSULTING ENGINEERS

JOB_

SHEET NO._


____ OF ___

W169 N10815 Redwood Lane Germantown, WI 53022

blodgetteng@wi.rr.com Tel/Fax: 262.293.9923

CALCULATED BY____

DATE

C	DATE: IUS BUILD: USTOMER: OCATION:	1/18/202 Base Wiberg A	Architecture	COMPANY: DESIGNED BY: REVIEWED BY: & D 16"0/0	Michael Blodgett		
	LEVEL: OCATION: TYPE: MATERIAL:	Roof Front Sec FLOOR B SOLID SA		LOADING: CODE: NDS:	CONTRACT A STREET AT	ational Building	g Code
Spruce-Pine-Fir	No	o. 2	(2) 1.5 X 7.25	DRY			-
ont Section Raft	er DIAGRAN	Λ					
	er DIAGRAN					6	&
	5		ual Length (ft): 16.25			6	8
AM PROPERTIE: (ft): 0 End (ft): 16.2: Area	5		ual Length (ft): 16.25 ly	BSW	Lams	G	8 Ker
AM PROPERTIE	S Member Slo		ly	BSW (lbf/ft)	Lams	6	& Kcr Creep Facto

	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10
Base Values	875	450	135	1150	425	1400	510
djusted Values	1208	540	135	1208	425	1400	510
C _M	1	1	1	1	1	1	1
C _T	1	1	1	1	1	1	
C _i	1	1	1 1		1	1	
CE	1.2	1.2	1	1.05	1		

BEAM DATA

			Unbraced Leng	th (ft)	Beam End						
Span	Length (ft)	1 m	Тор	Bottom	Elev. Diff (ft)	CL(Top)	CL(Bottom)	CL(Left)	CL(Right)		
1	14.25		0	14.25	0	1.00	0.47	1.00	1.00		
2	2		0	2	0	1.00	0.99	1.00	1.00		
PAS	S-FAIL										
			PASS/FAIL		AGNITUDE	STRENGTH	LOCAT	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Shear Stress Y		PASS (68.5%))	48.8	155.3		0	D+S		1.15
	Bending Stress Y (psi)	PASS (29.0%)	1	986.5	1388.6		5.5	D+S		1.15
	Deflection	(in)	PASS (11.1%)	0.1	78 (=L/270)	0.200 (=L/240)		5.25	S		1.15
	Bearing Stress	(psi)	PASS (84.1%)		67.4	425.0		0	D+S		1.15
REA	CTIONS Unit	s for V:	lbf Units for M	M: Ibf-ft					_		
Y axis	DEAD LI	VE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A	169	0	0	539	0	0	0	0	0	0	0
В	224	0	0	430	0	0	0	0	0	0	0
с	0	0	0	0	0	0	0	0	0	o	
Reaction	n Location						-			U	0

A

c

Page 1

Location: Front Section Rafter

				Steak of the	
Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
20	20	0	16.25	Dead	Y
	33.6	0	16.25	Snow	Y
	0	0	12	Snow	Y
4.2	4.2	0	16.25	Dead	Y
	20 33.6 70.53	20 20 33.6 33.6 70.53 0	20 20 0 33.6 33.6 0 70.53 0 0	20 20 0 16.25 33.6 33.6 0 16.25 70.53 0 0 12	20 20 0 16.25 Dead 33.6 33.6 0 16.25 Snow 70.53 0 0 12 Snow

NOTES

VITRUVIL CU PROJECT LC	STOMER:	1/18/2021 Base Wiberg A	singhile	RE	COMPANY: SIGNED BY: VIEWED BY: D 16" c)	Mic Mic	dgett Engineering hael Blodgett hael Blodgett	
	LEVEL: LOCATION:		Roof Hip Section Rafter FLOOR BEAM		LOADING: CODE: NDS:) 5 International Buil 5 NDS	ding Code
Spruce-Pine-Fir		0. 2 (1) 1.5 X 7.25		5	DRY			

Hip Section Rafter DIAGRAM

BEAM PROPERTIES

Start (ft): 0 End (ft): 12 Member Slope: 0/12 Actual Length (ft): 12

Area	b	t .	ly	BSW	Lams	G	Kcr
(in ²)	(in	4)	(in ⁴)	(lbf/ft)			Creep Factor
10.88	47.	63	2.04	2.1	1	0.42	1
STRENGTH P	ROPERTIES						
and the second	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10
Base Values	875	450	135	1150	425	1400	510
djusted Values	1208	540	135	1208	425	1400	510
с _М	1	1	1	1	1	1	1
C _T	1	1	1	1	1	1	1
C,	1	1	1	1	1	1	1
Cr	1.2	1.2	1	1.05	1	1	1

BEAM DATA

	1		Unbraced Leng	th (ft)	Beam End						
Span	Length (f	ft)	Тор	Bottom	Elev. Diff (ft)	CL(Top)	CL(Bottom)	CL(Left)	CL(Right)		
1	10		0	10	0	1.00	0.65	1.00	1.00		
2	2		0	2	0	1.00	0.99	1.00	1.00		
PAS	S-FAIL										
	1		PASS/FAIL	M	AGNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Shear Stress	Y (psi)	PASS (53.7%)		71.9	155.3		0	D+S		1.15
	Bending Stress	r (psi)	PASS (23.9%)	K	1057.1	1388.6	4	.68	D+S		1.15
	Deflectio	on (in)	PASS (28.9%)	0.1	42 (=L/337)	0.200 (=L/240)		12	S		
	Bearing Stres	s (psi)	PASS (76.6%)		99.3	425.0		0	D+S		1.15
REA	CTIONS U	nits for \	/: lbf Units for I	M: lbf-ft							
Y axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	106	0	0	415	0	0	0	0	0	0	0
в	159	0	0	411	0	0	0	0	0	0	0
с	0	0	0	0	. 0	0	0	0	0	0	0
Reactio	n Location										

Page 1

Location: Hip Section Rafter

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Uniform (lbf/ft)	20	20	0	12	Dead	Y
Uniform (lbf/ft)	33.6	33.6	0	12	Snow	Y
Trapezoidal (lbf/ft)	70.53	0	0	12	Snow	Y
Self Weight (lbf/ft)	2.1	2.1	0	12	Dead	Y

NOTES

Top-Flange Hangers – Solid Sawn Lumber (DF/SP)

Visit strongtie.com/software to learn more about our Joist Hanger Selector software.

These products are available with additional corrosion protection. For more information, see p. 15.

Joist or	Model	0-		Dimen	sions		Fasten	ers (in.)	I	F/SP Allow	wable Load	ls	Installed	Code
Purlin Size	No.	Ga.	w	H	В	TF	Header	Joist	Uplift (160)	Floor (100)	Snow (115)	Roof (125)	Cost Index (ICI)	Ref.
							Sawn Lun	nber Sizes						
F 2x4).	PF24	18	1%	37/16	11/2	11/16	(2) 0.148 x 3	(2) 0.148 x 3	300	1,255	1,255	1,255	Lowest	1
214	HU24TF	12	1%6	37/16	21/4	21/16	(6) 0.162 x 31/2	(2) 0.148 x 11/2	190	1,865	1,865	1,865	850%	() - i
DBL 2x4	HU24-2TF	12	31/8	37/16	21/2	21/2	(8) 0.162 x 3½	(2) 0.148 x 3	370	2,050	2,050	2,050	Lowest	6
	JB26	18	1%6	5%	11/2	1%	(4) 0.148 x 3	(2) Prong	=	995	995	995	Lowest	
2x6	LB26	14	1%16	5%	11/2	11/2	(4) 0.162 x 31/2	(2) 0.148 x 1 1/2	380	1,135	1,135	1,135	117%	6.00
	HU26TF	12	1%	5%	21/4	21/16	(10) 0.162 x 31/2	(4) 0.148 x 11/2	660	2,550	2,550	2,550	568%	
	HUS26-2TF	14	31/8	5¾	2	13⁄4	(6) 0.162 x 31/2	(4) 0.162 x 31/2	1,200	2,440	2,440	2,440	Lowest	
DBL 2x6	WP26-2	12	31⁄8	5%	21/2	23/16	(2) 0.148 x 3	(2) 0.148 x 3		3,300	3,300	3,300	33%	IBC FL, L
	HU26-2TF	12	31/8	5%	21/2	21/2	(10) 0.162 x 3½	(4) 0.148 x 3	815	2,785	2,785	2,785	87%	1
	JB28	18	1 %16	71/4	1½	1 %18	(4) 0.148 x 3	(2) Prong	-	955 -	955	955	Lowest	
2x8	LB28	14	1%6	71/4	1½	1½	(4) 0.162 x 31/2	(2) 0.148 x 1 1/2	380	1,135	1,135	1,135	98%	
	HU28TF	12	1%6	71/8	21/4	27/16	(10) 0.162 x 31/2	(4) 0.148 x 1 1/2	700	2,910	2,970	3,010	563%	
	HUS28-2TF	14	31/8	71/4	2	1%	(8) 0.162 x 31/2	(6) 0.162 x 31/2	1,765	3,400	3,400	3,400	Lowest	
DBL 2x8	WP28-2	12	31⁄8	71⁄8	21/2	23/18	(2) 0.148 x 3	(2) 0.148 x 3	-	3,300	3,300	3,300	16%	
	HU28-2TF	12	31/8	71/8	21/2	21/2	(12) 0.162 x 31/2	(4) 0.148 x 3	815	3,265	3,265	3,265	75%	
	JB210A	18	1%16	9¾6	2	17/16	(6) 0.162 x 31/2	(2) 0.148 x 1 1/2	260	1,685	1,685	1,685	*	-
2x10	LB210AZ	14	1%6	93/16	2	17/16	(6) 0.162 x 31/2	(2) 0.148 x 1 1/2	355	1,865	1,865	1,865	*	IBC, I
	HU210TF	12	1%18	91⁄a	21/4	21/16	(12) 0.162 x 31/2	(4) 0.148 x 1 1/2	700	2,910	2,970	3,010	359%	
	HUS210-2TF	14	31/8	91⁄4	2	11/2	(10) 0.162 x 31/2	(8) 0.162 x 3½	2,315	3,735	4,065	4,275	Lowest	IBC, FL, L/
DBL 2x10	WP210-2	12	31/8	91⁄8	21/2	23/16	(2) 0.148 x 3	(2) 0.148 x 3	1 	3,300	3,300	3,300	9%	
	HU210-2TF	12	31/8	91/8	21/2	21/2	(14) 0.162 x 31/2	(6) 0.148 x 3	1,220	3,945	3,945	3,945	67%	
TPL 2x10	HU210-3TF	12	411/18	91⁄8	21/2	21/2	(14) 0.162 x 31/2	(6) 0.162 x 3½	1,420	3,945	3,945	3,945	Lowest	
1.1.1	JB212A	18	1%16	11 1/8	2	17/16	(6) 0.162 x 3½	(2) 0.148 x 1 1/2	260	1,685	1,685	1,685		1
2x12	LB212AZ	14	1%	11 1/8	2	17/16	(6) 0.162 x 31/2	(2) 0.148 x 11/2	355	1,865	1,865	1,865		IBC,
	HU212TF	12	1%16	11	21/4	27/16	(14) 0.162 x 31/2	(6) 0.148 x 1 ½	700	3,070	3,070	3,070	339%	1
	HUS212-2TF	14	31/8	111/8	2	21/4	(10) 0.162 x 31/2	(8) 0.162 x 3½	2,080	4,375	4,375	4,375	Lowest	
DBL 2x12	WP212-2	12	31/8	11	21/2	23/16	(2) 0.148 x 3	(2) 0.148 x 3	<u> </u>	3,300	3,300	3,300	12%	IBC
	HU212-2TF	12	31/8	11	21/2	21/2	(16) 0.162 x 3½	(6) 0.148 x 3	1,220	4,590	4,590	4,590	48%	FL, L
TPL 2x12	HU212-31F	12	411/16	11	21/2	21/2	(16) 0.162 x 31/2	(6) 0.162 x 3½	1,420	4,590	4,590	4,590	Lowest	
	JB214A	18	1%16	131⁄8	2	1 7/16	(6) 0.162 x 31/2	(2) 0.148 x 1 ½	260	1,685	1,685	1,685		
2x14	LB214AZ	14	1%6	131⁄8	2	1 7/16	(6) 0.162 x 31/2	(2) 0.148 x 1 ½	355	1,865	1,865	1,865		IBC,
	HU214TF	12	1%6	13	21/4	21/2	(16) 0.162 x 31/2	(6) 0.148 x 1 1/2	1,140	2,955	3,045	3,110	189%	
	HUS214-2TF	14	31/8	131⁄a	2	21/4	(12) 0.162 x 31/2	(8) 0.162 x 3½	2,715	4,065	4,065	4,065	Lowest	
DBL 2x14	WP214-2	12	31/8	13	21/2	23/16	(2) 0.148 x 3	(2) 0.148 x 3	- 1	3,300	3,300	3,300	2%	
	HU214-2TF	12	31/8	13	21/2	21/2	(18) 0.162 x 31/2	(8) 0.148 x 3	1,330	4,030	4.030	4,030	33%	IBC,
TPL 2x14	HU214-3TF	12	411/16	13	21/2	21/2	(18) 0.162 x 3½	(8) 0.162 x 3½	1,560	4,030	4,030	4,030	Lowest	FL, L
0.40	LB216	14	1%6	151/8	2	11/2	(4) 0.162 x 3½	(2) 0.148 x 1 1/2	380	1,480	1,480	1,480	Lowest	
2x16	HU216TF	12	1%6	15	21/4	21/2	(18) 0.162 x 31/2	(8) 0.148 x 1 1/2	1,065	3,235	3,360	3,440	199%	

See footnotes on p. 131.

Codes: See p. 12 for Code Reference Key Char

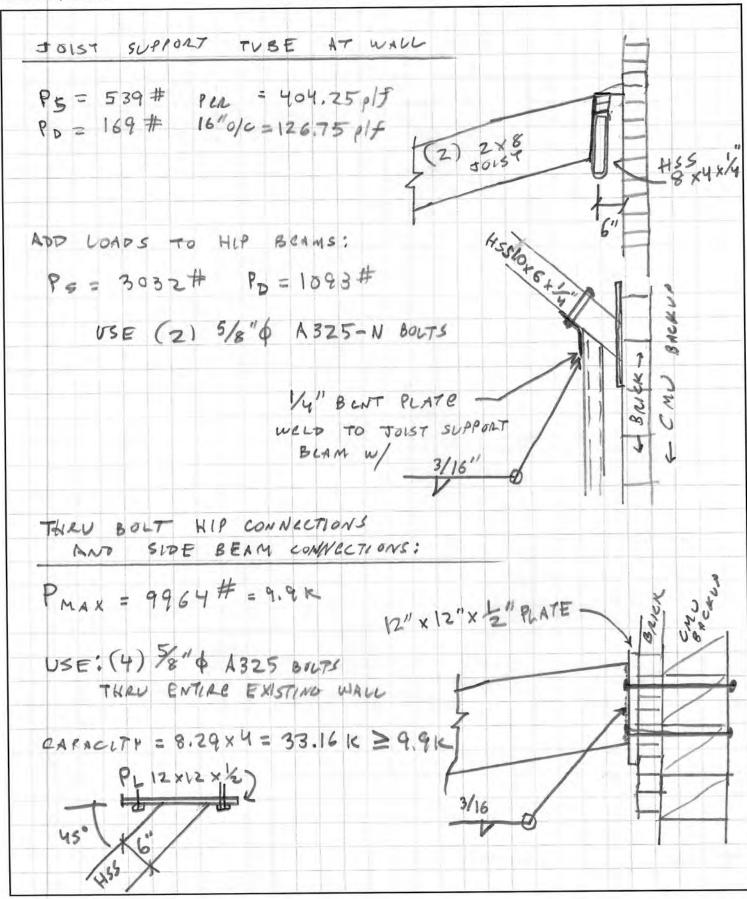
Solid Sawn Joist Hangers

SIME

Strong

STRUCTURAL CONSULTING ENGINEERS

JOB_


SHEET NO.__

W169 N10815 Redwood Lane Germantown, WI 53022 blodgetteng@wi.rr.com Tel/Fax: 262.293.9923

CALCULATED BY

DATE

OF

C	DATE: VITRUVIUS BUILD: CUSTOMER: PROJECT LOCATION:		rchitecture	COMPANY: DESIGNED BY: REVIEWED BY:	Michael Blodgett			
	LEVEL: OCATION: TYPE: MATERIAL:	FLOOR B	port Beam at wall EAM	LOADING: CODE: AISC:	·			
HSS Rectangular	Contraction of the second se		A500 Gr.C-50					

Joist Support Beam at wall DIAGRAM

fin	,											~
BEAN	/ PROPERT	TIES										
			ber Slope: 0/12 A	ctual Length	n (ft): 15							
Es x	the second se	y x10 ³	Fu x10 ³	Area	lx		ly	Z	x	Zy	J	Cw
(ps	si)	(psi)	(psi)	(in ²)	(in ⁴)		(in ⁴)	(ir	1 ³)	(in ³)	(in ⁴)	(in ⁶)
290	00	50	62	5.24	42.5		14.4	13	.3	8.2	35.3	0
DESI	GN PROPE	RTIES	/									
L	o Lr		Flange	Web	Flange		Web					
(in	n) (in)		Flexure	Flexure	Compression	Cor	npression	Cv	Cv_WA			
12	8 3530		Compact (Compact	Non-Slender	No	n-Slender	1	1			
BEAN	DATA											
		Unbr	raced Length	Beam End								
Span	Length	Тор		Elev. Diff	Pnt/u F	nc/и	Mn/и	Mn-OOP	/и Vn/и	Vn-OOP/и	Cb	Eb-OOP
1	15	0	15	0	0	0	33.18	18.87	61.11	46.13	1.136	1
PASS	-FAIL											
	-		PASS/FAIL	MA	GNITUDE	STE	RENGTH	LOCA	TION (ft)	AISC COD)F	LOAD COMBO
	Shear Forc	e Y (lbf)	PASS (93.2%)		-4125.2	7.00	1110.2		15	F7-1	-	D+S
	Moment \	(lbf-ft)	PASS (53.4%)		15469.3		3183.6		7.5	G2-1 (Ref 0	55)	D+S
	Deflec	tion (in)	PASS (50.2%)	0.37	4 (=L/482)	0.750	(=L/240)		7.5			5
REAC		Units for	V: lbf Units for M	A: Ibf-ft								
/ axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	wi	ND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A	1093	0	0	3032	0		0	0	0	0	0	0
в	1093	0	0	3032	0		0	0	0	0	0	0
Reaction	Location											
				and the second second	to the second			Same Prices		COLUMN STREET	Par Chatron	All States
	DLIST											
	Туре	Lef	t Magnitude	Right Ma	gnitude	Load St	tart (ft)	Load	End (ft)	Load Ty	pe	Direction
Unife	orm (lbf/ft)		404.25	404.		(15	Snow		Y
Uniform (lbf/ft)			126.75	126.		Ċ			15	Dead		Y
	eight (lbf/ft)		19.02	19.0		(15	Dead		Ŷ

NOTES

Page 1

DATE: VITRUVIUS BUILD: CUSTOMER: PROJECT LOCATION:		1/18/2021 Base Wiberg A	rchitecture	COMPANY: DESIGNED BY: REVIEWED BY:	Blodgett Engineering Michael Blodgett Michael Blodgett	ael Blodgett		
	LEVEL: OCATION: TYPE: MATERIAL:	Hip Beam HIP BEAM		LOADING: CODE: AISC:	2015 International Building Code			
		6x.250 A500 Gr.C-50						

Hip Beam - Steel DIAGRAM

3032

1093

25.82

Point (lbf)

Point (lbf)

Self Weight (lbf/ft)

2	>		Spille Ad						1511-3		å	3
BEAI	M PROPERT	IES										
): 0 End (ft): 2		ember Slope: 0/12	Actual Le	ngth (ft): 22.15							
		x10 ³	Fu x10 ³	Area	lx		ly	Z	ĸ	Zy	J	Cw
(p		(psi)	(psi)	(in ²)	(in ⁴)		(in ⁴)	(in	³)	(in ³)	(in ⁴)	(in ⁶)
29	000	50	62	7.1	96.9		44.1	23	.6	16.6	96.7	0
DES	IGN PROPE	RTIES				-						
	.p Lr		Flange	Web	Flange		Web					
	in) (in)		Flexure	Flexure	Compression	Com	pression	Cv	Cv_WA			
	08 5573		Compact	Compact	Non-Slender	S	lender	1	1			
BEA	M DATA											
		Unbr	aced Length	Beam End								
pan	Length	Тор		Elev. Diff	Pnt/и I	Pnc/и	Mn/и	Mn-OOP/	и Vn/и	Vn-OOP/и	Cb	Cb-OOP
1	20.153	0	20.153	0	0	0	58.88	33.25	77.85	74.09	1.151	1
1	2	0	2	0	0	0	58.88	33.25	77.85	74.09	2.611	1
PAS	S-FAIL											
			PASS/FAIL	MA	GNITUDE	STR	ENGTH	LOCA	TION (ft)	AISC COD	E	LOAD COMBO
	Shear Ford	e Y (lbf)	PASS (87.2%))	9964.3	77	852.7		0 .	F7-1		D+S
	Moment	(lbf-ft)	PASS (57.1%)) ;	25249.9	58	882.2		8.64	G2-1 (Ref G	5)	D+S
	Deflec	tion (in)	PASS (25.9%)	0.14	8 (=L/324)	0.200	(=L/240)		22.15			S
REA	CTIONS	Units for	V: lbf Units for I	M: Ibf-ft								
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIN	ND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A	2384	0	0	7580	0	(0	0	0	0	0	0
B	955	0	0	2749	0		0	0	0	0	0	0
c	0	0	0	0	0		0	0	0	0	0	0
Reactio	on Location							-			-	-
1	apple stills in the			the share of the second	ALL PLANE	a provide a series	sale of the			evine providence	in the second	B
A	AD LIST											
Lon	Туре	Lef	t Magnitude	Right Ma	gnitude	Load St	tart (ft)	Load	End (ft)	Load Ty	pe	Direction
Trap	ezoidal (lbf/ft)		75.57	0	-	0)	23	2.153	Dead		Y
	ezoidal (lbf/ft)		507.65	C		0)	2	2.153	Snow		Y
	ezoidal (lbf/ft)		75.57	C		0)	23	2.153	Dead		Y
	ezoidal (lbf/ft)		151.14	C		0)	2	2.153	Snow		Y
inap												

0.5

0.5

0

4

-

25.82

-

-

22.153

Snow

Dead

Dead

Y

Y

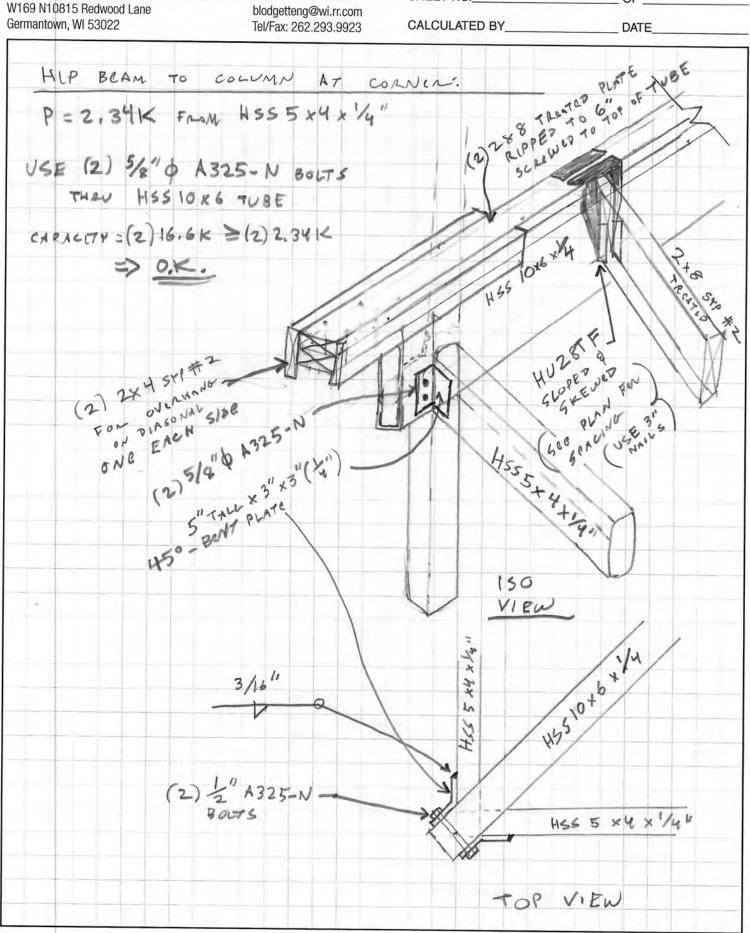
Y

VITRUVIUS CUS ⁻ PROJECT LOC	TOMER:	1/18/2021 Base Wiberg A	rchitecture	COMPANY: DESIGNED BY: REVIEWED BY:	Michael Blodgett			
	LEVEL: CATION: TYPE: TERIAL:	COLUMN	port Column	LOADING: CODE: AISC:	2015 International Building Code			
		4x.250	A500 Gr.C-50					

Inner Support Column DIAGRAM

	UMN PROPE	and the second		1.1.1.1	Table 1							
tart (ft			er Slope: 0/12 Ac							-20		C 11
Est	x10 ³ Fy	x10 ³	Fu x10 ³	Area	lx		ly	Zx		Zy	J	Cw
(F	psi) (p	psi)	(psi)	(in²)	(in ⁴)		(in ⁴)	(in ³)		(in ³)	(in ⁴)	(in ⁶)
29	9000 5	50	62	3.37	7.8	2	7.8	4.69)	4.69	12.8	0
DES	IGN PROPER	TIES	/				1000					
1	Lp Lr		Flange	Web	Flange		Web					
((in) (in)		Flexure	Flexure	Compression		ompression	Cv	Cv_WA	-		
1	160 4242	¢	Compact	Compact	Non-Slende	er No	on-Slender	1	1			
COL	UMN DATA								_			
	Longth	Unbra Top	aced Length C Bottom	Column End Elev. Diff	Pnt/и	Pnc/и	Mn/и	Mn-OOP/и	и Уп/и	Vn-OOP/и	Cb	Cb-OOP
Span 1	Length 9	0	0	0		100.9	11.7	11.7	27.63	46.13	1	1
PAS	SS-FAIL											
			PASS/FAIL	MA	GNITUDE	ST	TRENGTH	LOCAT	TION (ft)	AISC CODE	£.	LOAD COMBO
	Deflecti	ion (in)	PASS (99.1%)) 0.003	s (=L/40000)	0.30	00 (=L/360)		9			S
1	Compressive Ford	ce (lbf)	PASS (96.0%)	4073.9	1	100898.2		0	E3-1		D+S
REA	ACTIONS U	Units for V	V: lbf Units for	M: lbf-ft				10.00				- 12.11 v
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	w	/IND -	SEISMIC +	SEISMIC -	ICE	RAIN	
A	1618	0	0	2456	0		0	0	0	0	0	0
в	0	0	0	0	0		0	0	0	0	0	0
Reactic	on Location											
		1						All all and a second	Contraction of the		Constanting of	Construction of the second
A	AD LIST											
LOF	AD LIST Type	Leff	t Magnitude	Right Mag	anitude	Load	Start (ft)	Load	End (ft)	Load Typ	be	Direction
	Point (lbf)		-2456		Junior		9		-	Snow		Z
	Point (lbf)		-1508	-			9			Dead		z
	Weight (lbf/ft)		12.21	12.2	21		0	3	9	Dead		z

NOTES


Æ

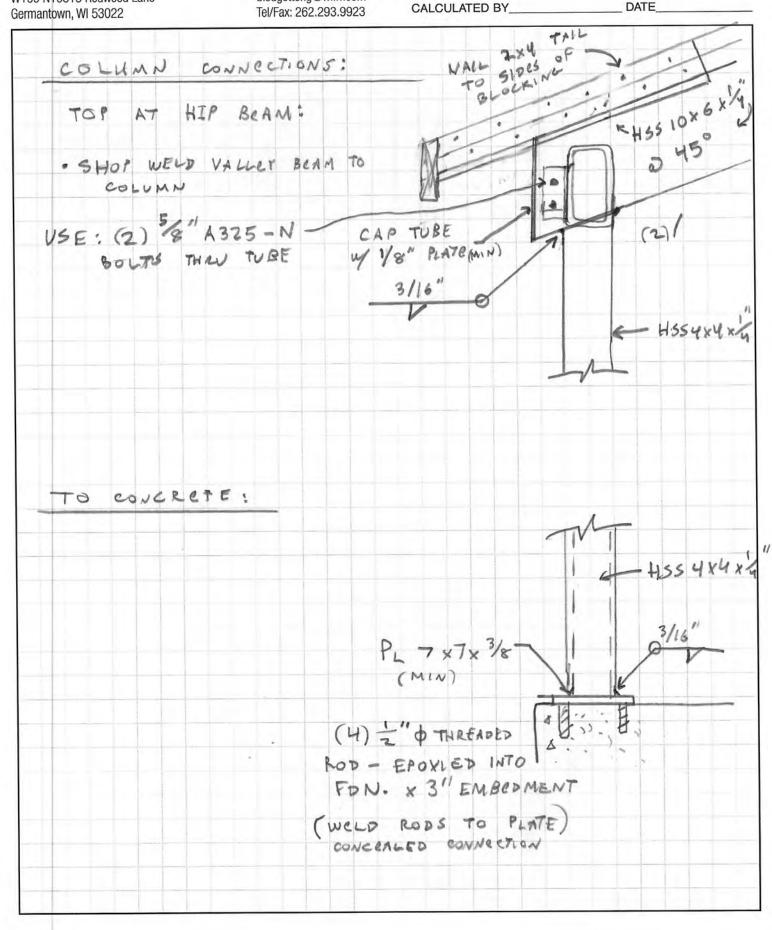
STRUCTURAL CONSULTING ENGINEERS

JOB

SHEET NO.

OF

STRUCTURAL CONSULTING ENGINEERS


W169 N10815 Redwood Lane

JOB

SHEET NO. blodgetteng@wi.rr.com

DATE

OF

