REZONING \& CONDITIONAL USE PERMIT (CUP) APPLICATIONS \& SITE PLAN REVIEW

4/12/21 Plan Commission Meeting

Taco Bell Restaurant / Sundance Inc.
Village Planner Report
Germantown, Wisconsin

Summary

Sundance Inc., agent for Marshall Peebles, property owner has submitted rezoning and Conditional Use Permit (CUP) applications and site development and building plans for redevelopment of the existing multi-tenant retail building located at N96 W18058 County Line Road with a new Taco Bell restaurant (relocating from the current site $1 / 4$ mile east on County Line Road).

Property Location: N96 W18058 County Line Road

Applicant/

Property Owners:

Tim Krause
Sundance Inc.
7915 Kensington Ct Brighton, MI

Marshall Peebles
P.O. Box 105

Butler, WI

Current Zoning: B-1: Neighborhood Business
Proposed Zoning: B-5: Highway Business

Adjacent Land Uses		Zoning
North	Open Space (former golf course)	I
South	Commercial (Meno Falls)	N/A
East	Commercial (Buffalo Wild Wings)	B-5/PDD
West	Commercial (Fleet Farm)	B-3

Proposal

Sundance Inc., agent for Marshall Peebles, property owner has submitted rezoning and Conditional Use Permit (CUP) applications and site development and building plans for redevelopment of the existing multi-tenant retail building located at N96 W18058 County Line Road with a new "quick serve" Taco Bell sit-down and drive-through restaurant (which will be relocating from the current location $1 / 4$-mile east of this parcel on County Line Road).

Rezoning Application

The subject parcel is 4.91 acres straddling both sides of the Menomonee River. However, only about 1.1 acres lies west of the river with .83 acres proposed to be disturbed by the redevelopment. The entire parcel is currently zoned B-1: Neighborhood Business and contains a 3,925 sqft multi-tenant retail center and a 1,200 sqft detached accessory storage building. Because the proposed Taco Bell restaurant caters to both local and highway-oriented traffic and requires a drive-through facility, the owner is proposing to rezone the property from the B-1 District to the B-5: Highway Business District.

Conditional Use Permit (CUP)

The parcel abuts the Menomonee River and contains both wetlands and floodplain along the west side of the river (see civil sheets C 1.0 to C 1.3). Re-development activities are affected by both the 25 ' wetland and 75 ' navigable waterway setback boundaries. While no actual development is proposed (nor allowed) in any part of the wetland or floodplain, development disturbance will encroach into the 75' navigable waterway setback area, and, into the 25 ' wetland setback area. All of the disturbed area will be subject to minimal filling and/or grading with portions of the paved parking lot, drive-through lane, and dumpster pad \& enclosure proposed within the 75 ' waterway setback.

Under the Village's Shoreland-Wetland Code, development may be permitted within a 75' waterway setback provided that additional buffering and/or other compensation for the affected area is provided on the property. The ratio of compensation required is based on a 1:1 ratio for any "horizontal" development (grading with <3' of elevation change) or a $2: 1$ ratio for "vertical" development (any structural improvements or grading with >3 ' of elevation change).

As presented in the Applicant's Stormwater, Erosion Control $\& \underline{\text { Wetland Setback }}$ Mitigation Narrative (SEE Appendix D dated February 22, 2021), approximately 690 sqft of 25 ' wetland setback will be disturbed and 12,710 sqft of navigable waterway setback for a total of 13,400 , sqft of disturbed area. As compensation for the disturbance, the developer proposes to install a 2,150 sqft vegetated filter between the parking lot and river, and, remove 12,900 sqft of invasive species from the wetland area on the north side of the re-developed area (see Exhibit A).

Detailed site development and building plans have been prepared for the proposed 1,786 sqft building and site redevelopment. As detailed in the plans, the following improvements are proposed:

Site Improvements

- Sawcut, remove and replace all existing asphalt parking and drives; demo and remove both buildings, existing utilities, light poles and signs;
- Install new curbing, asphalt driveway, drive-through lanes and parking area w/ 22 parking stalls; install new exterior light poles \& fixtures;
- Install new sanitary sewer and water laterals from County Line Road to the new 1,786 sqft. building;
- Install on-site storm sewer and swales draining to vegetated filter strip along west side of the river (east side of property);
- Install new landscaped areas along the south property line and plantings around the north \& south side of the building, driveway entrance, dumpster enclosure;
- The one (1) existing driveway will be re-constructed in the same location; the existing monument sign will be replaced in the same location at the driveway entrance

Building Improvements

- 1,786 sqft single-story building w/ flat roof w/ parapet walls to hide roofmounted mechanicals and served by a single drive-through service lane and outdoor dining patio w/ railing;
- Brick veneer in multiple earth-tone colors comprise the majority of the exterior finishes with pre-finished rust wall panels on the corner tower feature; brightly colored art panels are proposed to be installed on the east (entrance) and west (drive-through) elevations;
- aluminum storefront window systems throughout

Storm Water Management. Total impervious area will be reduced by 3,034 sqft to 24,874 sqft or 68.5% of the .83 -acre disturbed area on the site (12% of the entire 4.91 ac parcel). The proposed site development will match the existing drainage patterns by draining toward the Menomonee River via sheet drainage and storm sewer.

Because less than 1-acre of disturbance is proposed and the total impervious area is being reduced, the re-development is exempt from MMSD Chapter 13 post-construction surface3 water \& storm water run-off requirements. However, as indicated in the Applicant's Stormwater, Erosion Control \& Wetland Setback Mitigation Narrative (revision dated February 22, 2021) "...Best Management Practices (BMPs) will be implemented to the maximum extent practical to improve the quality of the stormwater runoff prior to it entering the Menomonee River. The curb inlet structures onsite will be equipped with two-foot sumps below the outlet elevations to help settle solids out of the stormwater prior to discharge. In addition, a vegetated filter strip will be provided down gradient of the development such that pollutants can be filtered out of the stormwater prior to entering the Menomonee River."

Landscaping \& Buffering. Landscaping is proposed in select areas around the site along the south property line abutting County Line Road, integrated into and around the parking lot, and around the dumpster enclosure. Plantings include deciduous trees, ornamental trees, evergreen trees, deciduous shrubs and turf grass. Street trees along County Line Road are also proposed (see Sheet C1.4). An existing retaining wall and split-rail fence will be retained abutting County Line Road.

Lighting. Exterior lighting of the site and building includes:

- (2) 36W LED wall pack and scone building-mounted on the west (drive-through) and east (entrance) elevations;
- (4) 182W 48 LED 400k (warm white) cut-off style, pole-mounted fixtures mounted on a 22 ' pole and 3' base (25 ' total height) in the parking and drive-through

Signage. Details for any proposed wall and monument signs will be provided as part of a separate and future sign permit application. NOTE: The Applicant proposes to install brightly colored, decorative art panels on the east and west elevations w/ minimal down lighting. Provided these panels are not used for advertising, they can be considered part of the exterior finishes (vs. additional signage).

Staff Comments

Community Development: Planning \& Zoning
The proposed rezoning of the entire property to B-5: Highway Business is consistent with the "Commercial" classification of the parcel on the 2020 Land Use Plan map. However, Staff has raised a number of concerns with the proposed re-development (see attached November 25 and January 19 review memos) that may suggest that rezoning this particular to the B-5 District may not be suitable for this particular property.

Staff concerns fall into the following categories:

- Traffic Impacts
- Site Distance
- Traffic Circulation

NOTE: This segment of County Line Road falls under the jurisdiction of Washington County. The Washington County Highway Commissioner expressed similar concerns and required a detailed traffic impact analysis (TIA) for the proposed Taco Bell redevelopment proposal. The TIA has now been completed and reviewed by Washington County and Village staff. The TIA, staff review comments and responses from the developer and their traffic consultant, Traffic Analysis \& Design, Inc. (TADI) are included in the packet.

Traffic Impacts

As indicated in the TIA, the proposed Taco Bell is expected to generate a significantly larger amount of traffic than the existing multi-tenant building. Existing traffic from the multi-tenant retail center is approximately 20 trips ($10 \mathrm{in} / 10$ out) during a typical weekday peak-hour (4:30-5:30pm). Assuming 10\% of the total trips per day are
generated in a typical weekday peak-hour, the total number of trips is estimated to be 200 trips per day.

The Taco Bell is expected to generate 90 trips ($45 \mathrm{in} / 45$ out) during a typical weekday mid-day peak-hour (12 noon to 1:00pm) and 840 total trips per day ($420 \mathrm{in} / 420$ out) on a typical weekday. The TIA assumes that only 50% of total trips are "new" trips and the other 50\% are trips coming from traffic already "passing by" on County Line Road. Based on these assumptions, traffic generated from re-development of the site with a new Taco Bell restaurant is expected to increase traffic 125% in the peak-hour and 110% over the course of a typical weekday.

The TIA measures the impact of new Taco Bell traffic on the "level of service" of the adjacent road system in terms of additional delay created at the driveway intersection with County Line Road (which also has Shady Lane entering from the south). This intersection is a "full-movement" intersection with separate left-turn lanes and no signal control; only stop sign control on the Shady Lane approach (south) and the Taco Bell driveway approach (north). The County Line Road approaches to the intersection (east and west) are uncontrolled.

One of the primary assumptions in the TIA is that all traffic generated from Taco Bell will travel to/from the site via County Line Road; no traffic is assumed to enter from or leave to Shady Lane (to the south). According to the TIA, existing traffic conditions in 2020 are acceptable with only the Shady Lane (northbound) left-turn operating at a Level of Service (LOS) "D"; the delay experienced by drivers at all of the other intersection approaches is operating at an LOS " C " or better (see Exhibit 3-3).

NOTE: The Village of Germantown nor Washington County has not officially adopted a minimum acceptable "Level of Service". Nonetheless, standard traffic analysis practice for TIA's conducted in the WisDOT southeast region is to accept LOS "D" as the minimum acceptable LOS, where LOS "E" and LOS "F" are deemed unacceptable.

The TIA analyzed "future" traffic conditions with additional traffic generated from Taco Bell in the year 2021 only; based on the assumption that the restaurant would be operational in 2021. The TIA concludes that traffic conditions in 2021 will be acceptable at the County Line Road intersection with only the Shady Lane (south) approach continuing to operating at LOS "D" (see Exhibit 5-1).

However, it should be pointed out that, in a supplemental "sensitivity analysis" prepared by TADI at the request of Village staff, based on an assumption that SOME traffic will travel to/from Shady Lane to the south (5 trips in the peak-hour was assumed), the LOS for the Shady Lane approach decreased from LOS "D" to LOS "E" in the same year 2021 (see TADI's February 22, 2021 "Taco Bell Sensitivity Analysis" memo). Ironically, this same "sensitivity analysis" that reveals different results in the first year with one small change in the directional distribution of traffic to the site, goes on to project traffic conditions 56 years into the future using the same background traffic assumption used in the initial TIA that traffic along County Line Road will not increase more than . 5% (.005) per year. As useless as a traffic analysis might be projecting traffic conditions 56
years into the future, this would likely explain why this same Shady Lane approach doesn't fall below LOS "F" until 2043 (23 years into the future) and no other approach at this intersection doesn't fall below LOS "D" until the year 2059 (38 years in the future!).

Staff's opinion is that it is unreasonable to assume that no traffic traveling to/from the new Taco Bell will come from/go to the south on Shady Lane. The supplemental sensitivity analysis shows that, assuming even a small amount of traffic will travel to/from the south, will reduce the LOS on at least one approach (Shady Lane) at this intersection below an acceptable level.

The historical crash statistics for this intersection cited in the TIA indicate that there have been nine (9) property damage-only crashes in the last 5 years (a crash rate of . 17 of crashes per million vehicles vs. the average rate of .88 per million vehicles. One factor cited in the TIA that may have contributed to these crashes is "...motorists poorly judging gaps in traffic or accepting smaller gaps than necessary to safely cross".

Unfortunately, the more typical approach to improving LOS conditions or reducing vehicle crashes at an uncontrolled intersection like this (i.e. signalization), is not a viable option in this situation. Both TADI and Washington County agree that this intersection is too close to the signalized intersection at the Fleet Farm driveway only 400 feet to the west. Consequently, the options are somewhat limited to improve the intersection LOS by either modifying the number of lanes or, more likely, restricting specific turning movements for traffic entering the intersection (e.g. no northbound left-turns from Shady Lane, no eastbound left-turns into Taco Bell from County Line Road, etc).

In the course of discussing this issue with TADI and the developer, the Washington County Highway Commissioner, Scott Schmidt, indicated that the costs incurred to make any intersection modifications deemed necessary by Washington County to improve the intersection LOS, reduce vehicle crashes or make other safety enhancements (e.g. raised medians to restrict turning movements) that can be attributable to Taco Bell traffic will have to be the responsibility of Taco Bell. The developer has agreed in concept to this requirement and has expressed their willingness to enter into an agreement with Washington County and the Village (if necessary).

Sight Distance

The TIA (Section V and Exhibits $5-2 a, 5-2 b \& 5-2 c$) goes through a rather elaborate process of analyzing intersection sight distance from and stopping distance to the Taco Bell driveway looking east along County Line Road. Anyone who has visited this property knows that trying to make a left turn onto County Line Road (or trying to go straight across to Shady Lane) is a difficult maneuver even under the best conditions. Contributing factors include:

- limited sight distance to see oncoming traffic because of the curve in the road;
- the railing on the north side of the bridge over the Menomonee River that blocks the view looking down County Line Road;
- the trees and other vegetation that grows north of the bridge that also blocks the view;
- the volume of traffic, travel speed and resulting inadequate "gaps" in the westbound traffic stream available to pull out into safely; and
- left-turning vehicles in the intersection median waiting to turn from County Line Road onto Shady Lane to get to Kohl's, Target or beyond.

The TIA details what the "minimum" required AND "desirable" sight and stopping distances that are required to be met when looking down the road from the Taco Bell driveway (sight distance) and when approaching the driveway from the west (stopping distance). As noted therein, the distances are different for passenger vehicles such as sedan-type cars, SUV's and pick-up trucks (referred to as "PV") and larger single-unit trucks such as UPS \& FedEx trucks and utility trucks (referred to as "SV").

In Chapter VI the TIA indicates that the following "minimum" and "desirable" sight distances are needed at the Taco Bell driveway (see Exhibits 1-3, 5-2a, 5-2b, and 5-2c and Appendix A):

VEHICLE TYPE	Minimum	Desirable
PV (cars, SUV's, pick-up trucks)	415 feet	500 feet
SU (UPS, FedEx, Utility trucks)	540 feet	630 feet

It's important to note the following:

1. the TIA indicates that just the "minimum" sight distances can be met, but NOT the desirable distances; and
2. these distances assume that a 14.5' setback distance from the travel lane to the eye of the driver is provided, but in this situation the eye-to-travel lane setback is only 8 feet.

Further, and more importantly, the TIA indicates that the sight distances listed above can only be met if all the following improvements are made (again see Exhibits 1-3, 5$2 a, 5-2 b$, and $5-2 c$):

1. Remove trees and other vegetation growing into and around the fence/guardrail on the north side of the bridge over the Menomonee River;
2. Move the west end of fence/guardrail on the north side of the bridge further north;
3. Re-construct and shift the existing curb line on both sides of the Taco Bell driveway and west of the bridge a distance of 5 to 6 feet to the south (to provide the 8 feet eye-to-travel lane distance without drivers having to inch out into the outer travel lane just to see down the road)

The Washington County Highway Commissioner has agreed in concept with these improvements provided that the property owner is solely responsible for the costs associated with preparing the detailed construction plans and making these improvements (as well as maintaining the vegetation on what is arguably the property owners land on both sides of the river north of the bridge).

Traffic Circulation

In addition to the TIA, the developer has provided turning movement diagrams (see Sheet "TT") that shows the outer limits of how a particular sized truck would track within the site assuming it needed to come onto the property. Turning movement diagrams are provided for a "Fire Truck", a "Delivery Truck" and a "Garbage Truck".

The diagrams generally indicate that the fire and garbage trucks could navigate within and through the site in a single, forward-moving path, but just barely and assuming that there are few if any other vehicles parked in the stalls within the site. The delivery truck diagram tells a different story. Similarly, the delivery truck diagram indicates that it could navigate within the site in a single, forward-moving path, but not without traveling over the dumpster pad, through or over the main bank of parking stalls, jumping a raised median planting area (albeit the curb is planned to be a mountable curb in anticipation of delivery trucks driving over it), and likely rubbing up against the inside of the retaining wall along the south property line. The diagram also assumes that there are NO vehicles in the main parking stalls and that the delivery truck enters the site from the east and leaves the site heading back to the east.

Although the developer indicates that all deliveries will be made "after hours" when, presumably no other cars are in the affected parking stalls, both Village and County staff are concerned that such a small, restrictive site layout combined with the likelihood of deliveries during business hours (despite Taco Bell's best intended "after hours only" delivery policy) will result in some delivery trucks simply parking in the outermost auxiliary lane on County Line Road with packages hand-trucked into the building via the sidewalk that is proposed in the front of the store from the existing sidewalk on County Line Road into the site. Although the outer auxiliary lane is currently marked as "no parking" and intended for use as a right-turn only lane and not for through traffic, Washington County projects that someday all three lanes on County Line Road in this location will need to be used for through traffic with "no parking" allowed under any circumstances. Unfortunately, the .83 -acre "buildable" site area west of the river has physical site limitations that impact the type and size of what buildings and facilities can be developed on this property while also accommodating and/or providing adequate space for safe access and on-site circulation needed for patrons, deliveries, garbage and other services, emergency vehicles.

Staff supports the CUP and proposed setback compensation plan set forth in the Applicant's Stormwater, Erosion Control \& Wetland Setback Mitigation Narrative (SEE Appendix D dated February 22, 2021). Although the proposed development does encroach into the setback areas, the amount of said encroachment is less than that of the pre-existing development. Compensation in the form of a 2,150 sqft vegetated filter strip between the parking lot and river and removal of invasive species from a 12,900 sqft portion of the wetland area north of the development area is adequate.

However, success of the filter strip plantings and removal of invasive species can only be determined if monitoring of the actions taken. Consequently, the owner should be required to prepare and submit an annual monitoring report to the Village documenting all management activities, the success of the management activities and any corrective
actions needed to ensure success of the mitigation plan for a minimum of three (3) years after initial implementation.

Building Architecture $\& \underline{\text { Materials }}$

As presented in the building elevations, the proposed building is a basic rectangular box constructed with brick veneer in two shades of light and dark gray (see Sheet A4.3 and renderings). Two tower-like elements are proposed at the southwest and northeast corners of the building and are comprised on metal panels with a rustic weathered appearance. Artwork panels are proposed on the west and east elevations; presumably to break up the monotony of the flat walls and gray color scheme.

The architecture is plain and uninspiring. Moreover, apart from the tower features, articulation is proposed only in the orientation of the face brick and subtle changes in color. The difference in the light and dark gray color scheme appears more dramatic on paper than it does/will in reality. Another Taco Bell re-development project using the same building design and materials was recently completed on STH 33 in West Bend (west of USH 45). Photos of this location will be presented at the April 12 PC meeting and will give members a rare comparison of what is shown in the plans and relatively unrealistic renderings to what a similar building looks like.

The developer describes the proposed building as being consistent with "... Taco Bell's current approach to cost effective design and construction" and that any further articulation recommended by staff would deviate from this approach. Staff recommends that something more be done to improve the appearance to be less plain and monotonous with additional articulation of the materials (and not just subtle color change or artwork hung on the exterior walls.

Conclusions

For the reasons discussed above, Planning \& Zoning Staff does NOT support the proposed Taco Bell re-development proposal at this location. The existing B-1: Neighborhood Zoning District allows retail and services businesses, including sit-down service only. The restriction prohibiting restaurant drive-thru service has the intended affect of not permitting land uses with relatively greater traffic generation like fast-food restaurants. Because of the relatively small property size, limitations created by the wetlands, floodplain and navigable river, and the inadequate sight distance resulting from the driveway location and juxtaposition of the property relative to the river, bridge, intersection, etc., the B-1: Neighborhood Business District may be the most appropriate district for whatever the highest and best use of this property should be given these specific property characteristics and limitations.

Community Development: Inspection Services

Inspection Services has indicated that the submission of state-approved plans will be required prior to issuing a building permit along with the required \$20,000 occupancy bond. A demolition permit is also required.

Public Works/ Village Engineer/Village Surveyor
The Village Engineer and Public Works Department staff have identified some minor
technical issues and plan requirements in a January 6, 2021 memo from Public Works Director (copy attached). All items listed shall be addressed prior to issuance of a building permit and commencing any new construction activities on the site (excluding demolition activities).

Water Utility/Wastewater Utility
The Water Utility has recommended that the following corrections be made to the utility plans prior to issuance of a building permit:

1. Note under Section 33-10-00(m) be revised to change the contact from "Kevin Korth" to "Jacob Tully";
2. A Tracer Box be added and located on the north side of the building and shown on Sheet C1.3.

Fire \& Police Departments

No comment received.

Village Forester/Streets \& Highway Department

The Village Forester is recommending the following:

1. The Landscape Planting Schedule be revised to indicate a total of (8) "Jack Flowering Pear" as proposed in the diagram;
2. An alternative and more salt-tolerant plant should be considered as a replacement for the "Tauton Yew" plants (20 total) proposed along the pavement edges of the site.

VILLAGE STAFF RECOMMENDATION

DENY the REZONING application submitted by Sundance Inc., agent for Marshall Peebles, property owner, proposing to rezone the subject property from the B-1: Neighborhood Business District to the B-5: Highway Business District.

DENY the CONDTIONAL USE PERMIT (CUP) application submitted by Sundance Inc., agent for Marshall Peebles, property owner, requesting permission to re-develop the subject property and develop up to 13,400 sqft of area located within a 25 ' wetland and 75' navigable waterway setback area.

DENY the SITE DEVELOPMENT \& BUILDING PLAN application submitted by Sundance Inc., agent for Marshall Peebles, property owner, requesting approval to redevelop .83 acres of the subject property with a 1,786 sqft Taco Bell "quick serve" restaurant and drive-thru facility located at N96 W18058 County Line Road.

However, if the Plan Commission takes action to APPROVE the Taco Bell redevelopment proposal for this property, Staff recommends that the following recommendations and conditions be included as part of the Plan Commission's recommendation to the Village Board for the Rezoning and Conditional Use Permit applications, and, as specific conditions of approval for the Site Development and Building Plans:

APPROVE the proposed REZONING application submitted by Sundance Inc., agent for Marshall Peebles, property owner, to rezone the 4.9-acre subject property from the B-1: Neighborhood Business District to the B-5: Highway Business District.

APPROVE the CONDTIONAL USE PERMIT (CUP) application submitted by Sundance Inc., agent for Marshall Peebles, property owner, requesting permission to re-develop the subject property and develop up to 13,400 sqft of area located within a 25 ' wetland and 75' navigable waterway setback area subject to the following one (1) condition:

1. With regard to the proposed setback compensation plan set forth in the Applicant's Stormwater, Erosion Control \& Wetland Setback Mitigation Narrative (Appendix D dated February 22, 2021), the property owner shall prepare and submit an annual monitoring report to the Village Community Development Department documenting all implementation activities and outcomes of the compensation plan to ensure success of the plan for a minimum of three (3) years after initial implementation.

APPROVE the SITE DEVELOPMENT \& BUILDING PLAN application submitted by Sundance Inc., agent for Marshall Peebles, property owner, requesting approval to redevelop .83 acres of the subject property with a 1,786 sqft Taco Bell "quick serve" restaurant and drive-thru facility located at N96 W18058 County Line Road subject to the following twelve (12) conditions:

1. Site Plan approval is subject to all the conditions and requirements set forth herein and adopted by the Plan Commission. Site Plan approval is subject to both the Rezoning and Conditional Use Permit applications being approved by the Village Board. Site Plan approval is granted for the following plans and plan revisions submitted by the Applicant unless a plan is superseded by subsequent plan sheets required by the Village Planner or Village Engineer pursuant to any revisions required by the conditions contained herein and/or by action of the Plan Commission:
a. Architectural plan set dated December 18, 2020
b. Civil Engineering plan dated February 22, 2021
c. Landscaping plan dated February 22, 2021
d. Exterior Lighting plan dated February 22, 2021
e. Storm Water, Erosion Control \& Wetland Setback Mitigation Plan dated February 22, 2021 (including Ex. A)
2. All landscaping, grading, paving, storm water management, utility and other improvements shown on the approved site plans shall be installed as approved prior to issuance of an occupancy permit for the building addition unless a cash bond or letter of credit in an amount equal to 120 percent of the estimated installation and material costs reviewed and approved by the Village is submitted to the Village as necessary to ensure that installation of the proposed features and improvements will be completed within one (1) year after issuance of the occupancy permit.
3. All exterior doors (except primary entrance) shall be clearly marked with reflective 5 " or larger letters/numbers to aid emergency personnel access as required by the Police Department.
4. State agency (DSPS) approved plans and a $\$ 20,000$ occupancy bond are required by Inspection Services at the time of building permit application. The Village of Germantown is an authorized delegated agent of DSPS to provide all commercial plan review and inspection services through SAFEBuilt of WI and the Village of Germantown.
5. The Water Utility is requiring that the following corrections be made to the utility plans prior to issuance of a building permit:
a. Note under Section 33-10-00(m) be revised to change the contact from "Kevin Korth" to "Jacob Tully";
b. A Tracer Box be added and located on the north side of the building and shown on Sheet C1.3.
6. All technical issues and plan requirements listed in the January 6, 2021 memo from Public Works Director Larry Ratayczak shall be addressed in a revised civil engineering construction plan set signed \& sealed by an engineer and approved by the Village Engineer/Public Works Department prior to issuance of a building permit and prior to commencing any new construction activities on the site (excluding demolition activities).
7. The Village Forester is requiring the following to be reflected in a revised Landscaping Plan submitted for review and approval prior to issuance of a building permit:
a. the Landscape Planting Schedule shall be corrected to indicate a total of (8) "Jack Flowering Pear" as proposed in the landscaping plan diagram;
b. An alternative and more salt-tolerant plant species shall be installed as a replacement for the "Tauton Yew" plants proposed along the pavement edges of the site.
8. All temporary and permanent exterior signs require separate review and approval of a Sign Permit by the Plan Commission (permanent signs) or Planning \& Zoning Staff (temporary signs). Contact Lori Johnson, Planning \& Zoning Services to coordinate all Sign Permit applications.
9. The proposed building architecture and materials shall be revised to include additional features and articulation to improve or enhance the character and appearance of the building to be less plain and monotonous. Said improvements or enhancements might include, but not be limited to additional articulation of the brick materials beyond the subtle color change and exterior artwork currently proposed. Revised building elevations and color renderings shall be submitted to the Plan Commission for review and approval prior to issuance of a building permit.
10. The property owner and Taco Bell operator shall ensure that all trucks and other deliveries will be conducted when the restaurant is not open (i.e. "after hours") and can and will be conducted within the property so that no trucks or other vehicles park on or stage from County Line Road.
11. The property owner and Taco Bell operator shall enter into an agreement or memorandum of understanding (MOU) with the Washington County Highway Commission that the off-site improvements recommended in the Taco Bell Development Traffic Impact Analysis (TIA) dated December 22, 2020, and generally described below shall be designed, approved and constructed/installed to the specifications and satisfaction of the Washington County Highway Commission prior to issuance of an occupancy permit by the Village of Germantown:
a. Remove trees and other vegetation growing into and around the fence/guardrail on the north side of the bridge over the Menomonee River that are in the sight line looking east from the Taco Bell driveway and maintain as needed;
b. Move and/or re-construct the west end of fence/guardrail on the north side of the bridge to a point further north to remove it from the sight line looking east from the Taco Bell driveway;
c. Re-construct and shift the existing curb line on the north side of Cunty Line Road adjacent to the subject property a distance of 5 to 6 feet to the south (to provide at least an 8 feet eye-to-travel lane distance for existing vehicles waiting at the Taco Bell driveway so drivers do not have to move into the outer travel lane when looking east from the Taco Bell driveway);
d. Relocate the existing stop sign to the south side of the crosswalk at the Shady Lane approach at the /County Line Road intersection.
12. Prior to issuance of a certificate of occupancy the property owner and Taco Bell operator shall enter into an agreement or memorandum of understanding (MOU) with the Washington County Highway Commission and the Village of Germantown that addresses the potential need for temporary and permanent
road and/or safety improvements within the County Line Road right-of-way or subject property to ensure safe and efficient traffic conditions and circulation adjacent to the subject property and at the driveway intersection. Said improvements may include, but not be limited to closing or modifying the design and function of the median opening at the property driveway/Shady Lane intersection. Said agreement shall ensure that all costs associated with determining the need for, engineering and design, and construction/installation of any improvements or safety enhancements shall be the responsibility of the property owner or Taco Bell operator and not Washington County or the Village of Germantown. Said agreement shall stipulate that Washington County shall determine what physical road improvements and/or safety enhancements are required and when said improvements shall be made.

January 15, 2021
Tim Krause
Sundance Inc.
7915 Kensington Court
Brighton, MI 48116

RE: Taco Bell Proposal for N96 W19058 County Line Road;
 Rezoning/CUP/Site Plan Application Staff Review Comments-2 ${ }^{\text {nd }}$ Review

Mr. Krause:
Village Staff has reviewed the revised plan set and supporting materials submitted for the proposed Taco Bell re-development proposal and in response to Village Staff's initial set of review comments. Below are follow-up comments and outstanding items/issues that need to be addressed. Please provide the requested information, corrections and/or revisions as soon as possible.

Community Development Department

1. The following questions and concerns regarding the TIA prepared by TADI need to be addressed:
a. The only non-site traffic being analyzed is current background traffic in year 2021. Why isn't there an assessment with future year background traffic increases that provides some sort of "sensitivity analysis" of what traffic will be with the new development in the near term (say 5 years out to 2026) and the changing traffic pattern at the driveway given the large percentage pass-by trips Taco Bell is projected to attract?
b. The TIA indicates that 2018 background traffic was adjusted to 2020 based on a 10% increase; why no assumed increase from 2020 to 2021? If 10\% from 2018 to 2020 is reasonable, why not 5% more for 2021?
c. Confirm that the current traffic count at the property driveway is only 10 trips (5 in \& 5 out) during both the midday peak-hour and PM peak-hour and no traffic on a Saturday mid-day peak-hour as shown in Ex 3-2a \& 3-2b?
d. In Ex 3-3, does the queue value for the NB LT movement listed as " 45 " mean that vehicles are backing up 45 feet (or 2-3 car lengths) at the NB approach? Is that all it takes at this intersection, 2-3 cars waiting on either the SB or NB approach, to create an LOS "D" condition?
e. Explain what the TIA analysis shows in terms of queuing at the SB approach (i.e. the property driveway) waiting to enter County Line Road to turn either left to go EB or turn right to go WB. How many vehicles are expected to queue at this approach? How many more vehicles would it take to move the LOS from "D" to "F"?

Tim Krause, Sundance Inc.
Taco Bell Proposal for N96 W19058 County Line Road
Staff Review Comments
January 15, 2021
Page 2 of 5
f. It is unrealistic to expect that NO traffic will travel to the new Taco Bell from the south. Why not model the condition that includes NB and SB TH "through" trips into the intersection? What would happen if a few trips did enter the site from the south? What impact on intersection LOS would that have?
g. What analysis, if any, was done of the queuing forming at and behind the drivethrough window and what impact those vehicles might have on the vehicles queuing at the driveway waiting to exit the property?
h. What is your (TADI's) assessment of the proposed site layout with respect to the arrangement of the parking stalls, drive isles, drive-through lanes, exit lanes, truck turning movements?
i. Why are the east-looking sight line requirements for an SUV (540 feet) different from those of a lower profile passenger vehicle (415 feet) as indicated in Ex 5-2a \& 5-2b? Intuitively the reverse would be true given the better visibility provided by an SUV. Is it because of the bridge railing getting in the way?
j. In Ex 5-2a the top image indicates that the minimum required "ISD" sight distance looking east of 415 feet for passenger vehicles is NOT met because only 215 feet can be achieved. Similarly, the bottom image indicates that the minimum required "ISD" distance of 415 feet is NOT met even after moving the vehicle 5 feet into the outer travel lane of County Line Road... which is consistent with the "Recommended Modifications" shown on page 2 and Ex 1-3. So, are you suggesting that even though the recommended curb modification to County Line Road does NOT provide the minimum recommended ISD sight distance for passenger vehicles, sight conditions are at least improved? And that should be sufficient?
k. Ex 5-2b shows the minimum required "ISD" sight distance looking east for SUV's is 540 feet and that distance is met, but only by requiring the driver to look "behind" (left of) the bridge railing between it and the trees that extend across the driver's view from the river. Respond to the following:
i. Is it reasonable and acceptable to require drivers to do these sorts of visual gymnastics in order to determine that a sight distance requirement is achievable?
ii. Using this photo image, it appears that a vehicle may be visible at the 540 ' distance if the driver looks behind the railing and the trees are cut down, trimmed, or during "leaf-off" seasons of the year. But it also appears that the observed vehicle would likely be hidden by the railing as it travels toward the driver. Doesn't this nullify the conclusion that the 540 ' ISD sight distance is met? It seems unreasonable to conclude that the 540' distance is simply met because a driver can see an approaching vehicle at a 540 feet distance, but then can't see the same vehicle as it travels behind the railing and then re-emerges at a distance of only 215 feet (an estimate using the image in $5-2 a$).

Tim Krause, Sundance Inc.
Taco Bell Proposal for N96 W19058 County Line Road
Staff Review Comments
January 15, 2021
Page 3 of 5
iii. One of the "recommended modifications" is to remove the trees and other vegetation along the bridge. Given that there are trees on both sides of the river and not necessarily easily accessible, who do you envision will d this sort of regular landscaping-type maintenance? Washington County? Taco Bell?
iv. Another "recommended modification" is to "correct" by moving a portion of the west end of the bridge railing or fence (as referred to in Ex 1-3) "... such that the westernmost point is adjusted north". But the "line of sight" shown in Ex 1-3 with the orange dashed line is incorrectly positioned south of the fence when compared to the line of sight shown in Ex 5-2b... which shows the object at a distance of 540 feet visible from north (behind) the fence. If the westernmost end of the fence/railing were moved to the north, it would likely obstruct the line of sight even more.
I. Ex 5-2c shows the minimum required "ISD" sight distance looking west as 305 feet, but the blaze orange object appears to be already out into the drive lanes of County Line Road. Shouldn't the object be visible at the driveway?
m . A general comment about the sight distance analysis and graphics, the fact that the "objects" used to show when a sight distance requirement can/cannot be met need to be shown in blaze orange, circled and with a zoom-in window tells a lot about the sight distance conditions along County Line Road in this vicinity and more particularly to/from this property.
n. Village staff remains concerned with the proposed access. Although already existing, the single driveway serves a small multi-tenant building with uses that generate little traffic by comparison to the proposed fast-food restaurant. This is supported by the TIA. Staff continues to recommend that you explore a $2^{\text {nd }}$ access driveway on County Line (subject to Washington County review and approval). Specifically, one that involves an enter-only driveway (ideally the existing) and a separate exit-only driveway further west on the site. The TIA supports the fact that site vision looking to the west from exiting traffic is poor... even if barely meeting the site distance requirements AFTER modifying the curb location on County Line Road (or requiring SUV drivers to look behind the bridge railing).
2. The revised Landscaping along the street yard abutting County Line Road is very much improved. However, given the plan to retain the 18 " retaining wall, all of the proposed landscaping except for the street trees along the south edge will be hidden from view and provide no visual enhancement to the site from public way. What can you do to address this?
3. The wetland disturbance mitigation plan and information does not include the amount of area impacted within the 75 ' navigable waterway setback. This is a significant oversight and needs to be addressed. The notion that this requirement would be completely ignored because the re-developed site will impact the 75 ' setback to

Tim Krause, Sundance Inc.
Taco Bell Proposal for N96 W19058 County Line Road
Staff Review Comments
January 15, 2021
Page 4 of 5
approximately the same extent as the previous development is disconcerting. While there was some discussion at the pre-application meeting about this fact, Staff did not instruct the applicant to ignore these requirements altogether nor provide some sort of exemption, stated or implied. The wetland mitigation proposal is weak to begin with, but it is a start given the site constraints... but the 25^{\prime} wetland setback is the least impacted setback areas of the two that apply. If the developable portion of the site is too small to accommodate the proposed development under current site development requirements, then maybe this is not a suitable site. Let us know if we need to discuss alternative strategies to address the 25 ' wetland and 75 ' navigable waterway setback regulations and requirements.
4. The parking lot setback near the driveway entrance narrows to 6.6 feet where a minimum of eight (8) feet is required. It appears to have been widened, but there is no specific call out to show that it meets the minimum.
5. The issue of vehicles queuing at/behind the drive-through window during lunch time and other peak traffic generation periods for the restaurant remains a concern.
Designating the northernmost four (4) parking stalls for "employees only" is only a bandage for the problem. Further, the narrative explanation that the new facility will have less queuing at the drive-through window because the new facility will be more efficient due to better technology and improved workspace is not any more convincing than if you said the new store will have new employees that are more motivated and capable of working faster. Can you look at alternatives for relocating the dumpster enclosure or other parking and/or building reconfigurations that will move drive-through traffic to the perimeter of the parking lot and not impacting circulation within it?
6. The addition of a second tower element improves the appearance, but overall, the architecture and materials remain plain and uninspiring. Can you add some degree of physical articulation along the east and west elevations and not just color changes of the same material?
7. Will the murals on the east and west elevations be changed out on a regular basis or if the color/images fade? Is there a regular program or can the Village have some say in when the murals should be changed for something new?

Public Works/Village Engineer

8. Please refer to the $2^{\text {nd }}$ review memo from the Director of Public Works dated January 6, 2021 for additional comments the various plans. These corrections will appear in the staff report as recommended conditions of approval but can be made to the final set of engineer-stamped plans.

Fire Department $\&$ Police Department

9. No comment.

Tim Krause, Sundance Inc.
Taco Bell Proposal for N96 W19058 County Line Road
Staff Review Comments
January 15, 2021
Page 5 of 5

When submitting revised plans or additional information, please submit (1) digital plan set and three (3) full-size, hard-copy plan sets set to the Community Development Department.
Complete responses and/or information, plan revisions, etc. to the items/issues listed above will help avoid delay in the review and processing of your application.

Engineering Department Memorandum

To : Jeffrey W. Retzlaff, AICP, Planning Director/Zoning Administrator
From : Lawrence Ratayczak, P.E., Director of Public Works
Date : January 6, 2021
Re : Sundance - Taco Bell

Items Reviewed:

1. Civil Plan Set
Dated: 12-29-20

General Comments:

1. Please respond to each item below. A written response addressing each item shall be included in your submittal.
2. The submitted plans have been reviewed for general conformance with State and Village design guidelines. Additional comments could arise as a result of the plan completion and modifications. The items listed below will need to be fully resolved before the Engineering Dept. can recommend a formal approval of the plans and permit for construction.
3. The project will require DSPS plumbing system review and approval. Please provide a copy of the DSPS approval prior to engineering approval
4. As-builts prepared to Village standards shall be prepared and provided to the Village post-construction (for all applicable items).
5. A professional engineer's original seal is to be affixed, signed and dated on the final set of construction plans.
6. Contact Ryan Ehlerding, 262-250-4723 for a utility permit.
7. As a guide to the review response: Items in italics are resolved or acknowledged, items in regular font are to be addressed yet, items in Bold are additional feedback to remaining original comment.

Water Utility Comments

1. Include submittals for all materials used in the water lateral installation. Prior approval by the utility required.
2. Poly wrap all brass, tapping saddle and curb stop.
3. Chip stone for bed and cover over water main. Slurry back fill in the ROW.
4. Include schematic of Tracer wire per village spec.
5. Inspection of the water lateral and live tested will be required prior to back fill.
6. Show on plan and abandon the existing (2) water laterals onsite. (2) day notice for shutting down the distribution main for the removal of the corps and repair sleeving main. Shutting down the distribution will not be on a Monday or Friday.
7. Provide GPS points for the tap, curb stop and up to the bend as it goes into the building.
8. Provide the GPS coordinates to Kevin Korth of Ruekert \& Mielke (262-542-5733) Cost to populate the Villages GIS dash board layers will be borne by this project.
9. Sheet Number C0.2 under Division 33 Utilities there needs to be a letter added " L " to call out for submittal of materials for review and approval by the Engineering/Village Utilities.
10. Sheet Number C0.2 under Division 33 Utilities there needs to be a letter added " M " to call out the GPS coordinates need to be taken for any utilities tying into the village systems. The survey points need to be captured in NAD83 with each GPS point classified by a written description in the excel upload file and sent to our GIS provider Ruekert and Mielke. For the water service, GPS the tap, the lead and the curb stop. Also GPS the tracer wire box on the outside of the building.
11. Letter I of the Division 33 Utilities, Tracer wire will be 14 gauge not 10-14 gauge
12. Add a note to the plans requiring the contractor to schedule a preconstruction meeting with the Water Utility prior to starting construction.

Wastewater Utility Comments.

1. Existing sampling manhole may be reused with the following modifications. Install 2' barrel section below the cone and reconstruct the chimney to current Village standards. Add current Village sampling manhole detail to the plans to show the requirements for chimney reconstruction.

C1.1 Civil Site Plan

1 Provide an accessible route to the public sidewalk.
2. Driveway to the site provides for difficult ingress and egress with minimal throat length and stacking distance. Any other alternatives to improve this condition?
3. Improvements proposed in the ROW shall be reviewed and approved by Washington County. Provide a copy of the County approval.

C1.2 Grading and Erosion Control Plan

1 Show construction entrance location
2. Provide erosion control notes. Sequence, inspection requirements, stabilization timeframes, late season stabilization requirements, etc.
3. Silt fence does not work well for erosion control at pipe outlets. Provide alternate erosion control methoc at the storm sewer outfall. Show silt fence in a " U " shape to contain sediment.

November 25, 2020

Tim Krause
Sundance Inc.
7915 Kensington Court
Brighton, MI 48116

RE: Taco Bell Proposal for N96 W19058 County Line Road; Rezoning/CUP/Site Plan Application Staff Review Comments

Mr. Krause:
Village Staff has reviewed the applications, plan set and supporting materials submitted for the proposed Taco Bell re-development proposal for the above cited property. Below are the outstanding items/issues that need to be addressed. Please provide the requested information, corrections and/or revisions as soon as possible.

Community Development Department

1. I understand that a traffic impact analysis has been required by the Washington County Highway Commissioner given his/their jurisdiction over County Line Road. Please provide a copy of that analysis to the Village when completed. What is the status of that TIA?
2. Village staff is concerned with the proposed access. Although already existing, the single driveway serves a small multi-tenant building with uses that generate little traffic by comparison to the proposed fast-food restaurant. Staff will withhold further critical analysis until we are able to review the TIA, but based on experience and familiarity with the site, staff is recommending at this point that you explore another access alternative. Specifically, one that involves an enter-only driveway (ideally the existing) and a separate exit-only driveway further west on the site. The site vision looking to the west from exiting traffic is poor; the "neutral" area between travel lanes on County Line Road is subject to vehicles trying to turn left to/from four separate movements and is likely to be occupied by left-turning vehicles from the mainline County Line Road turn lanes. Delays affecting exiting vehicles from the Taco Bell site combined with minimal on-site stacking area will create a traffic hazard during peak traffic generation periods for the restaurant.
3. The applications are signed by "future owner" and need to be signed by the actual owner at the time the applications are submitted for review (unless proof of recent/pending change in ownership is provided).
4. It appears from the survey and legal description that there's a separate 17' wide strip of land that is not owner by the current owner nor part of the actual property. Please explain what's going on with this and what the correct area of ownership includes.
5. Landscaping along the street yard abutting County Line Road is very inadequate. Staff will be recommending additional landscaping to include trees \& shrubs similar to

Tim Krause, Sundance Inc.
Taco Bell Proposal for N96 W19058 County Line Road
Staff Review Comments
November 25, 2020
Page 2 of 3
that which was recently required for the Burger King site to the east. If the area within which landscaping is currently proposed is too small/narrow for more landscaping, then the parking lot needs to be shifted to the north to make additional space available. In addition to the amount of parking lot landscaping, a separate street tree requirement needs to be met. One deciduous tree a minimum of 2.5 " caliper is required for every 50 feet of street frontage; a minimum of six (6) trees are required with approx. 280 feet of frontage. Minimum planting height for evergreens is 6 feet (not 42"-48"), 2.5" caliper for deciduous trees and 5-gal container size for shrubs.
6. The wetland disturbance mitigation plan and information does not include the amount of area impacted within the 75' navigable waterway setback. This is a significant oversight and needs to be addressed.
7. Was the floodplain boundary location shown on the site plan field verified and surveyed or just superimposed from the floodplain maps over the plan?
8. What earthwork is required/proposed within the floodplain boundary?
9. Demolition permits are required for removal of the two existing buildings prior to any work. Contact SAFEBuilt staff in the Village Inspection Services for permit requirements and information.
10. Please call out the proposed setback from the west property line to the new asphalt pavement for the drive-through lanes; it appears to only be 1.5 feet where a minimum of eight (8) feet is required. The minimum 8 feet is intended to provide a buffer area with landscaping. In this case, the pavement is right up against a concrete wall with no landscaping proposed, much less even possible.
11. Also call out the setback distance from the west property line to the drive-through canopy; a minimum of 25 feet is required.
12. The parking lot setback near the driveway entrance narrows to 6.6 feet where a minimum of eight (8) feet is required. That needs to be widened.
13. What will be done with the existing concrete wall along the south property line to which to split-rail fence is located next to/on top of? Will that remain? Will the new proposed landscaping shown along the south property line closest to the building be hidden behind this wall?
14. At the existing Taco Bell store down the road, it is typical for a queue of 12-15 vehicles form at/behind the drive-through window during lunch time and other peak traffic generation periods for the restaurant. This generally not a problem for anyone other than those waiting in line given how the drive-through lanes are separated from the parking stalls and length. However, it appears that a 12-15 vehicle queue at the proposed store will impact 4-5 parking stalls... either by boxing parked cars in or prohibiting cars to park. How can this be remedied?
15. The elevation views appear to show a recessed area on the roof behind parapet walls where all roof-top mechanicals are located. Please confirm that all RTU's will be located below the roof line and not visible from the public way or parking lot?

Tim Krause, Sundance Inc.
Taco Bell Proposal for N96 W19058 County Line Road
Staff Review Comments
November 25, 2020
Page 3 of 3
16. The architecture is very plain and variation of materials limited. Can you add some degree of articulation along the east elevation right (north) of the main entrance? Repeat or add another the tower feature possibly in some way?
17. What is the purpose of the murals on the east and west side elevations? Will these be used for advertising at some point in the future?

Public Works/Village Engineer
18. Please refer to the separate review memo provided by the Director of Public Works dated October 20, 2020 for additional comments regarding engineering, erosion control, storm water, public utilities, access, etc.

Fire Department \& Police Department
19. No comment.

When submitting revised plans or additional information, please submit (1) digital plan set and three (3) full-size, hard-copy plan sets set to the Community Development Department.
Complete responses and/or information, plan revisions, etc. to the items/issues listed above will help avoid delay in the review and processing of your application.

Engineering Department Memorandum

To : Jeffrey W. Retzlaff, AICP, Planning Director/Zoning Administrator
From : Lawrence Ratayczak, P.E., Director of Public Works
Date : October 20, 2020
Re : Sundance - Taco Bell

Items Reviewed:

1. Civil Plan Set C0.1-C2.1

Dated: 10-05-20

General Comments:

1. Please respond to each item below. A written response addressing each item shall be included in your submittal.
2. The submitted plans have been reviewed for general conformance with State and Village design guidelines. Additional comments could arise as a result of the plan completion and modifications. The items listed below will need to be fully resolved before the Engineering Dept. can recommend a formal approval of the plans and permit for construction.
3. The project will require DSPS plumbing system review and approval. Please provide a copy of the DSPS approval prior to engineering approval
4. As-builts prepared to Village standards shall be prepared and provided to the Village post-construction (for all applicable items).
5. A professional engineer's original seal is to be affixed, signed and dated on the final set of construction plans.
6. Contact Ryan Ehlerding, 262-250-4723 for a utility permit.
7. As a guide to the review response: Items in italics are resolved or acknowledged, items in regular font are to be addressed yet, items in Bold are additional feedback to remaining original comment.

Water Utility Comments

1. Include submittals for all materials used in the water lateral installation. Prior approval by the utility required.
2. Poly wrap all brass, tapping saddle and curb stop.
3. Chip stone for bed and cover over water main. Slurry back fill in the ROW.
4. Include schematic of Tracer wire per village spec.
5. Inspection of the water lateral and live tested will be required prior to back fill.
6. Show on plan and abandon the existing (2) water laterals onsite. (2) day notice for shutting down the distribution main for the removal of the corps and repair sleeving main. Shutting down the distribution will not be on a Monday or Friday.
7. Provide GPS points for the tap, curb stop and up to the bend as it goes into the building.
8. Provide the GPS coordinates to Kevin Korth of Ruekert \& Mielke (262-542-5733) Cost to populate the Villages GIS dash board layers will be borne by this project.

Wastewater Utility Comments.

1. Existing sampling manhole may be reused with the following modifications. Install 2' barrel section below the cone and reconstruct the chimney to current Village standards.

C1.1 Civil Site Plan

1 Provide an accessible route to the public sidewalk.
2. Driveway to the site provides for difficult ingress and egress with minimal throat length and stacking distance. Any other alternatives to improve this condition?

C1.2 Grading and Erosion Control Plan

1 Show construction entrance location
2. Provide erosion control notes. Sequence, inspection requirements, stabilization timeframes, late season stabilization requirements, etc.
3. Silt fence does not work well for erosion control at pipe outlets. Provide alternate erosion control methoc at the storm sewer outfall. Show silt fence in a "U" shape to contain sediment.

Village of

4, 4. t

(hermentafint

Fee must accompany application
$\square \quad \$ 700$ Minor Addition

- $\$ 1,240$ Construction $<10,000 \mathrm{SF}$
- $\$ 2,095$ Construction $10,000 \mathrm{SF}$ to 50,000
$\square \quad \$ 3,460$ Industrial Construction $>50,000 \mathrm{SF}$
$\square \quad \$ 3,460$ Commercial Construction $>50,000$
$\square \quad \$ 200$ Plan Commission Consultation
$\square \quad \$ 125$ Fire Department Plan Review

PAID \qquad DATE \qquad

SITE PLAN REVIEW APPLICATION

Pursuant to Section 17.43 of the Municipal Code
Please read and complete this application carefully. All applications must be signed and dated.

APPLICANT OR AGENT

Sundance, Inc.
Tim Krause
Brighton, Ml 48116 Kensington Court
Phone (248) 563-8016
E-Mail Tim.Krause@teamlyders.com

PROPERTY OWNER

Future property owner - Black River Bells, LLC
7915 Kensington Ct
Brighton, MI 48116

Phone (248) 446-0100
E-Mail clint.lyders@teamlyders.com

PROPERTY ADDRESS
N96W19058 County Line Rd

3
NEIGHBORING USES - Specify name and type of use, e.g. Enviro Tech - Industrial, Smith - Residential, etc.

| North
 Menomonee River/Vacant | South
 Tri-City National Bank,
 KW - Fleet Farm - Commerical | East
 Kohls - Commercial | Menomonee River/Nacant |
| :--- | :--- | :--- | :--- | West | Fleet Farm - Commercial |
| :--- |

4 READ AND INITIAL THE FOLLOWING:
\qquad I am aware of the Village of Germantown ordinance requiring fire sprinklers in most new construction.
\qquad I understand that all new development is subject to Impact and/or Connection Fees that must be paid before building permits will be issued.
x I understand that an incomplete application will be withdrawn from the Plan Commission agenda and that all resubmissions to the Plan Commission are subject to a new application fee.
5.

SIGNATURES - ALL APPLICATION MUST BE SIGNED BY OWNER!

Applicant
Date

Fee must accompany application

SITE PLAN REVIEW APPLICATION

Pursuant to Section 17.43 of the Munidpal Code

Please read and complete this application carefully. All applications must be signed and dated.

APPLICANT OR AGENT

Sundance, Inc.
Tim Krause
7915 Kensington Court
Brighton, M1 48116
Phone (248) 563-8016
E-Mail Tim.Krause@teamlyders.com

PROPERTY OWNER

Phone (
E-Mail \qquad

PROPERTY ADDRESS
N96W19058 County Line Rd

NEIGHBORING USES - Specify name and type of uss, egg. Envifo Tech - Industrial, Smith - Residential, etc.

North Menomonee RiverNacant NW - Fleet Farm - Commerical	South Tri-City National Bank, Kohls - Commercial	East Menomonee RiverNacant	Fest
Fleet Farm - Commercial			

READ AND INITIAL THE FOLLOWING:
$\underline{x} 1$ am aware of the Village of Germantown ordinance requiring fire sprinklers in most new construction.
 I understand that all new development is subject to impact and/or Connection Fees that must be paid
before building permits will be issued.
\qquad I understand that an incomplete application will be withdrawn from the Plan Commission agenda and that all resubmissions to the Plan Commission are subject to a new application fee.

SIGNATURES - ALL APPLICATION MUST BE SIGNED BY OWNER!

 olla Date
$121 / 20120$

Fee must accompany application

- $\$ 1460$ Paid \qquad Date \qquad

CONDITIONAL USE PERMIT APPLICATION

Pursuant to Section 17.42 of the Municipal Code
Please read and complete this application carefully. All applications must be signed and dated.

APPLICANT OR AGENT
Sundance, Inc.
Tim Krause
7915 Kensington Court
Brighton, MI 48116

Phone	$(248) 563-8016$
Fax $\quad 1 \quad)$	

E-Mail Tim.Krause@teamlyders.com

PROPERTY OWNER

Future property owner - Black River Bells, LLC
\qquad
Brighton, MI 48116
Phone (248) 446-0100
\qquad

TO WHOM SHOULD THE PERMIT BE ISSUED?
Sundance, Inc.
(3)

PROPERTY ADDRESS

TAX KEY NUMBER

N96W19058 County Line Rd
GTNV_333999

DESCRIPTION OF EXISTING OPERATION

Brielly describe the use as it exists today, including use, size, number of employees, hours of operation, etc. If this permit involves new construction, describe the current status of the property, e g. "vacant." Use additional pages as necessary.

See project narrative

DESCRIPTION OF PROPOSED OPERATION

5
Write the name of the proposed conditional use exactly as it appears in the Municipal Code
See project narrative
Describe the proposed use, Including size, number of employees, hours of operation and extent of any new construction/alterations.

See project narrative

See attached legal description

7 SUPPORTING DOCUMENTATION:

$\star \quad$ Site Plan and elevations for new construction (can be conceptual)
$\star \quad$ Photos of existing use and/or proposed use operating elsewhere - Colored Perspectives
\square
\square

8 READ AND INITIAL THE FOLLOWING:

\qquad I understand that the Village is under no obligation to issue a Conditional Use Permit and will do so only if the applicant successfully demonstrates that the proposed use is harmonious with the neighborhood and the long range goals of the Village.
\qquad I will notify the Village if any aspects of the conditional use changes. I understand that failure to do so may result in the revocation of the CUP.
\qquad I understand that a Conditional Use Permit is valid only if the conditions and restrictions of the permit are met. I understand that failure to comply with any aspect of the permit may result in revocation.
\qquad I understand that Village Staff is required to post one or more signs along the street frontage of and/or on the property subject of this application that indicate to nearby property owners and the general public that a public hearing of my application will be held before the Village Plan Commission and/or Village Board prior to action being taken on this application; I hereby grant Village Staff permission to enter onto the property for the expressed purpose of installing said sign(s) provided Village Staff is responsible for installing, maintaining and removing said signs in a reasonable manner and timeframe.
9) SIGNATURES - ALL APPLICATIONS MUST BE SIGNED BY OWNER!

SITE PLAN REVIEW CHECKLIST

Pursuant to Section 17.43 of the Municipal Code
This checklist provides a summary of requirements found in the Municipal Code. It is intended purely as a guide for developers and should not substitute for a full review of the Code and applicable regulations. (Revised $1 / 02$)

GENERAL INFORMATION

|X Provide Completed Checklist with submittal
|X. Names and addresses of owner/developer/designer
IX Graphic scale, north arrow
|X Location sketch
(X Size of site (gross and net acreage)
XX Existing zoning
X Adjacent zoning and uses
NA Number of residents (subdivisions)
X Number of employees

EXISTING SITE INFORMATION

X Dimensions of site and lot lines (pipes found, pipes set, monuments)
(X Existing grades (2^{\prime} contours minimum)
IX Adjacent property grades (within 10' minimum of property lines)
IX Adjacent structures (within 20^{\prime} minimum of property lines)
X Drainage systems and structures
IX Natural features (woods, streams, lakes, ponds, outcroppings)
X Wetland boundaries (provide date of staking)
XX Floodplain elevation and boundaries
NAEnvironmental concerns (underground tanks, etc)
\bar{X} Roads, curbs, parking lots, pavement areas
X Structures (location, size)
X Rights-of-Way (existing/ultirnate)
X Easements (drainage, utility)
X Existing utilities (sanitary, water, electric, gas, telephone)
X Benchmark locations and elevations
IX Location of fences, wells, borings, etc.

ARCHITECTURAL PLANS

X Existing building location
X Existing building elevations/materials
X Proposed use (use list from Section 17.45)
XX Statement of design intent (narrative)
X Proposed floor plans (dimension)
X Square footage (total and individual rooms/stores)
X Proposed elevations (dimension)
IX Proposed building height
X. Proposed materials and colors (material sample board required for new construction)
IX Proposed signage (elevations, color, square footage, height, construction material, lighting)
X Details of any special features

PROPOSED SITE PLAN

IX Grading and spot elevations
(X Erosion control measures (silt fencing, hay bales, rip-rap, tracking mat, stockpile locations)
IX Stormwater management

- stormwater management design report
- general drainage pattern
- swales w/ arrows for direction of flow
- pond design with outfalls
- culverts (location/size)

X Utilities (size, invert elevations, length, slope, etc.)
-- sanitary
-- water
-- stormsewer
IX Building location (dimension)
X Building elevation (finished grade)
IX Location of proposed signage
IX Details of outside storage (including trash receptacles)
IX Setbacks (clearly marked and dimensioned)
X Vehicular entrances (dimension to centerline of nearest intersection)
NA Streets (dimension and direction for one-ways)
[X Curve radii
X Sidewalks (dimension)
IX Parking areas (show striping/spot elevations)
X Parking setback from property line
$\mathbb{N} A$ Loading areas (dimension)
X Lot coverage

- Square footage total
- Impervious surfaces total (\%)
- Green space total (\%)
- Percent permitted (over/under \%)
(X Municipal utility connections
- Sanitary sewer (pipe size/elevations)
- Water (size, valve location, elevations)
- Location of hydrants
inA Easement for public water mains

LIGHTING PLAN

|X Major improvements for context
X Location/nature of existing fixtures
X Location of proposed fixtures
X Photometric report (to scale on plan)
X Manufacturers cut-sheets of all fixtures
IX Lighting schedule

- key to plan
- number/type of fixtures
- output (wattage)

IX installation details as appropriate

LANDSCAPING PLAN

X Major improvements for context (building, drives, walks)
X Proposed outdoor amenities (benches, paths, etc.)
IX Existing vegetation

- Species
- Size
- Approximate canopy in plan

IX Vegetation to be destroyed - List and show location
(X Proposed method of saving existing vegetation during construction

IX Proposed landscape features (berms, fountains)
IX Existing/proposed lighting
NA Irrigation/watering systems (locate outlets)
|X Plant lists or schedules

- Keyed to plan
- Number of each species
- Size when planted (caliper)

X Installation details/staking

MODEL SUBMITTAL
INCLUDES THE FOLLOWING PLANS:

1. Cover / Title Page
2. Existing Conditions Survey
3. General Site Plan
4. Grading, Paving \& Erosion Control Plan
5. Utility Plan
6. Site Details (curbing, catch basins, detention ponds, pavement, erosion control and sign details)
7. Landscape Plan
8. Landscape details (planting schedule, berming cross-sections, method of installation)
9. Lighting Plan
10. Floor Plan
11. Exterior Building Elevations
12. Building Material Sample Board

In addition to the items on this list, Village Staff and/or the Plan Commission may require additional drawings and data to be submitted for approval.

If any public improvements or work is to be done in the Public Right-of-Way, the Village will require that a Developer's Agreement be submitted and approved by the Village Board.
fees must be paid at time of application
\$200 Plan Commission Consultation \$1,085 Rezoning
\$1,240 PDD < 5 acres
\$2,095 PDD 5-20 acre site
\$3,460 PDD > 20 acre site
Date Paid: \qquad Received by: \qquad

REZONING \& PDD APPLICATION

Pursuant to Section 17.51 of the Municipal Code
Please read and complete this application carefully. All applications must be signed and dated.

APPLICANT OR AGENT
Sundance, Inc.

Tim Krause
7915 Kensington Court
Brighton, M1 48116
Phone (248)563-8016
E-Mail Tim.Krause@teamlyders.com

PROPERTY OWNER
Marshall Peebles
PO Box: 105
Butler, WI 53007

Phone (7802) $790 \cdot 1358$
E-Mail Peehlescarwash@ad.com PROPERTY ADDRESS OR GENERAL LOCATION TAX KEY NUMBER

N96W19058 County Line Rd	GTNV_333999

REZONING REQUEST

FROM

TO
B-5

METES AND BOUNDS LEGAL DESCRIPTION OF PROPERTY - REQUIRED
Attach pages as necessary
See attached

PURPOSE OF REZONING REQUEST

Briefly describe why the applicant is rezoning the property. Include a description of the proposed use, including any new construction and number of employees, if applicable.

See attached narrative

SUPPORTING DOCUMENTATION:

x
Plat of Survey (1:100) - Rezone Exhibit
© Site Plan and elevations for new construction (can be conceptual)

READ AND INITIAL THE FOLLOWING:

I understand that the Village is under no obligation to rezone property and that density and lot coverages provided in the Zoning Code are maximums. Actual build out will depend on myriad factors including topography and other natural conditions, surrounding neighborhood context and the detailed design of a project.

I understand that Village Staff, Plan Commission and/or Village Board may request additional information to properly evaluate this request and failure to provide such information may in itself by sufficient cause to deny the petition.

I am aware that this rezoning shall go into effect immediately upon the final approval of the Village Board and its execution of the rezoning ordinance

X
I understand that Village Staff is required to post one or more signs along the street frontage of and/or on the property subject of this application that indicate to nearby property owners and the general public that a public hearing of my application will be held before the Village Plan Commission and/or Village Board prior to action taken on this application; I hereby grant Village Staff permission to enter onto the property for the expressed purpose of installing said signs) provided Village Staff is responsible for installing, maintaining and removing said signs in a reasonable manner and time frame.

8 SIGNATURES - ALL APPLICATIONS MUST BE SIGNED BY OWNER!

October 5, 2020

Project Narrative

Project: Taco Bell N96W18058 County Line Rd Germantown, WI 53022 Excel Project No: 2005200

Sundance, Inc. is requesting a rezone, conditional use permit, site plan review and Architectural Review Board review and approval for a Taco Bell quick-serve restaurant with drive-through located at N96W18058 County Line Rd. The property is currently zoned B-1, Neighborhood Business. Rezoning is proposed to $\mathrm{B}-5$; a drive-through associated with a restaurant is permitted in the B-5 zoning district. The B-5 rezone will also be consistent with the Village Land Use Plan. The Menomonee River runs through the property and a Conditional Use Permit is required for development within 75 ' of the ordinary highwater mark. The existing land use is a multi-tenant building/salon; this building will be demolished for the proposed development.

The overall parcel is 4.91 acres, and the proposed site disturbance is 0.83 acres; all disturbance is occurring on that part of the property located west of the Menomonee River. Surrounding land uses include commercial developments. Wetlands located on the property were delineated by Evergreen Consultants, LLC, Wisconsin DNR Certified Assured Delineators. The proposed site improvements will not encroach into the 25 -foot wetland setback required by Section 24.04 (3) (c) (5) of the Village of Germantown Municipal Code, however, minor site disturbance will be required in a small portion of the setback area. This area of disturbance will be compensated for by providing a vegetated filter strip suited to a wet mesic soil site. No filling is proposed within the mapped floodplain area on site.

The existing and proposed development encroaches into the 75 -foot development setback from the ordinary high water mark required by Section 24.04 (3) (c) (5) of the Village of Germantown Municipal Code. To mitigate the impacts of this encroachment, the total area of impervious surface on the developed area of the subject property will be reduced from 27,908 square feet to 24,904 square feet, a vegetated filter strip suited to a wet mesic soil site will be provided between the developed area and the undisturbed wooded area east of the development as noted above, and two foot (2') deep sumps will be provided in the storm sewer catch basins to allow for settlement of sediment prior to discharge to the Menomonee River.

The proposed Taco Bell will be single-story, and the building footprint will be 1,786 square feet. An outdoor dining patio with railing system is proposed on the south end of the building. The new building will be in the approximate same location as the existing salon building and a new waste enclosure is proposed to the east of the building. The drive through is proposed on the west side of the building. The facility will be in operation from 7 AM to 3 AM, 7 days per week. The anticipated number of employees is 25.

The building design represents Taco Bell's newest concept restaurant consisting of simple massing and crisp material lines. Tower elements accent the main entrance and building corner.

The main entrance tower provides an inviting entry to the restaurant. The corner tower in prefinished rust wall panels provides a contemporary signature element unique to Taco Bell. Brick veneer in earth tone colors creates a warm appearance that blends with the surrounding development. In keeping with previous Taco Bell designs, vibrantly colored artwork panels provide accents on the walk-up and drive-thru sides of the building. Exterior materials are represented in the attached color elevations and renderings. Building signage is proposed approximately as illustrated in the attached elevations and renderings. A pylon sign is also proposed on the side of the site. Official sign submittals for permitting will be provided at a later date by the tenant.

Access to the site will remain in the existing location off County Line Rd. Proposed parking includes 22 spaces, including two (2) handicap stalls. New water and sanitary services are proposed for the site. Stormwater from the proposed site will be conveyed via sheet drainage and storm sewer to the Menomonee River directly east of the development. Stormwater drainage for the site will match the current drainage patterns. Post-construction stormwater management requirements do not apply to this site due to it being less than 1 acre of site disturbance while also reducing overall impervious land cover on the site.

Landscaping will be provided in accordance with the Village ordinance, in an approach which ensures species resiliency and complimentary aesthetics. Additional landscaping has been provided along the frontage of County Line Road per Village requests. New site lighting will also meet the Village ordinance in a fashion that provides appropriate foot candles for safety and cut-off fixtures for minimal light trespass. Building sconces are also proposed in a decorative style that compliments the development and building architecture.

LEGAL DESCRIPTION

PARCEL A:

A part of the Southwest $1 / 4$ of Section 33, in Town 9 North, Range 20 East, in the Village of Germantown, County of Washington, State of Wisconsin, described as follows:

Beginning at the Southeast corner post of the Southwest 1/4 of Section 33, Township 9 North, Range 20 East, on the County line between Waukesha and Washington Counties; thence North 40 rods; thence West far enough to make $51 / 4$ acres; thence South 40 rods to the county line; thence East on said line to the place of beginning.

EXCEPTING therefrom that part conveyed to the State of Wisconsin, Department of Transportation, Division of Highways, by Deed recorded as Document No. 304757, also excepting that part taken for highway by Award of Damages recorded in Volume 476, Page 542, as Document No. 312605, also excepting that part conveyed to the Wisconsin Department of Transportation by Deed recorded March 26, 1990, in Volume 1064, Page 61, as Document No. 557015 and excepting that part conveyed to the State of Wisconsin, Department of Transportation, by Deed recorded in Volume 1545, Page 224, as Document No. 703241.

PARCEL B:

All that part of the Southwest 1/4 of Section 33, in Township 9 North, Range 20 East, in the Village of Germantown, Washington County, Wisconsin, bounded and described as follows:

Commencing at the Southeast corner of the Southwest $1 / 4$ of said Section 33; thence N 01 degrees 24 minutes 44 seconds W along the East line of said Southwest $1 / 4$ Section, 660.00 feet; thence $S 89$ degrees 20 minutes 37 seconds $W, 346.50$ feet to the point of beginning of the land to be described; thence $S 01$ degrees 24 minutes 44 seconds $\mathrm{E}, 600.38$ feet to the North right-ofway line of C.T. H. "Q"; thence $S 87$ degrees 51 minutes 12 seconds W along said right-of-way line 23.04 feet; thence $N 0$ degrees 55 minutes 08 seconds $W, 600.94$ feet; thence $N 89$ degrees 20 minutes 37 seconds $E, 17.87$ feet to the point of beginning.

Tax Key No. GTNV 333999
Address: N96 W18058 County Line Road

ZONING EXHIBIT

Jeffrey W. Retzlaff
AICP, Planning Director/Zoning Administrator
Community Development Center
N112W17001 Mequon Road PO Box 337
Germantown, WI 53022

Re: Taco Bell Proposal for N96 W19058 County Line Road;
Rezoning/CUP/Site Plan Application Staff Review Comments-2 ${ }^{\text {ND }}$ Review

Dear Mr. Retzlaff,
This letter is in response to the comments received on January 25, 2021 regarding the proposed Taco Bell development located at N96 W18058 County Line Road in the Village of Germantown.

Community Development Department

1) The following questions and concerns regarding the TIA prepared by TADI need to be addressed:
a. The only non-site traffic being analyzed is current background traffic in year 2021. Why isn't there an assessment with future year background traffic increases that provides some sort of "sensitivity analysis" of what traffic will be with the new development in the near term (say 5 years out to 2026) and the changing traffic pattern at the driveway given the large percentage pass-by trips Taco Bell is projected to attract?
TADI Response: An analysis of the construction year is typically done when a development is expected to generate $100+$ trips in a peak hour. An analysis of construction year plus a future year is typically done when a development is expected to generate $500+$ trips in a peak hour. Because the Taco Bell is expected to generate $100+$ trips but less than 500 trips (90 trips weekday lunch hour, 60 trips weekday evening peak hour, 100 trips Saturday lunch hour), a future year analysis was not performed. Per your request, a sensitivity analysis will be forwarded via technical memorandum.
b. The TIA indicates that 2018 background traffic was adjusted to 2020 based on a 10% increase; why no assumed increase from 2020 to 2021? If 10% from 2018 to 2020 is reasonable, why not 5\% more for 2021?
TADI Response: This comment relates to the adjustment of traffic from pandemic traffic volumes to non-pandemic traffic volumes (TIA Chapter III Part B). That is, the increases referenced in the TIA are not growth rates but are adjustments to account for the pandemic. Based on discussions with WisDOT, the straight-line annual growth rate along CTH Q, east of STH 175 , is less than $0.5 \%(0.005)$ per year.
C. Confirm that the current traffic count at the property driveway is only 10 trips (5 in \& 5 out) during both the midday peak-hour and PM peak-hour and no traffic on a Saturday mid-day peak-hour as shown in Ex 3-2a \& 3-2b?

TADI Response: As shown in TIA Exhibit 3-2B, the current volumes at the property driveway were 20 trips ($10 \mathrm{in} / 10$ out) during the weekday lunch hour, 20 trips (5 in/15 out) during the weekday evening peak hour, and 10 trips ($5 \mathrm{in} / 5$ out) during the Saturday midday peak hour. These volumes are correct. Note that, as is common practice, all volumes are rounded to the nearest 5 vph . Any volumes shown with a "-" in the TIA were analyzed with at least one vph in the traffic models.
d. In Ex 3-3, does the queue value for the NB LT movement listed as "45" mean that vehicles are backing up 45 feet (or 2-3 car lengths) at the NB approach? Is that all it takes at this intersection, 2-3 cars waiting on either the SB or NB approach, to create an LOS " D " condition?
TADI Response: Per the footnotes in TIA Exhibit 3-3, the traffic queues shown are in feet. A queue of 45 -feet represents a $95^{\text {th }}$ percentile queue of two vehicles (statistically, there is a 5% chance of this queue being exceeded). Note that both the reported LOS values and the reported queues are a function of traffic delay (the delay values are described in Chapter III, Part C, C1) and are not a function of each other (the approach queues does not affect LOS, and LOS doesn't affect approach queues).
e. Explain what the TIA analysis shows in terms of queuing at the SB approach (i.e. the property driveway) waiting to enter County Line Road to turn either left to go EB or turn right to go WB. How many vehicles are expected to queue at this approach? How many more vehicles would it take to move the LOS from " D " to " "? TADI Response: Per TIA Exhibit 5-1, the southbound $95^{\text {th }}$ percentile queue from Taco Bell is expected to be 20 -feet, or one vehicle. This lane accommodates all movements, so this queue is the total of all movements. The reported LOS for this movement is C. Additionally, the northbound through/left-turn movement from Shady Lane is reported as maintaining LOS D with a queue of 50 -feet, or two vehicles. Per your request, a sensitivity analysis will be forwarded via technical memorandum to address questions related to how much more traffic would cause a degradation in LOS from D to F.
f. It is unrealistic to expect that NO traffic will travel to the new Taco Bell from the south. Why not model the condition that includes NB and SB TH "through" trips into the intersection? What would happen if a few trips did enter the site from the south? What impact on intersection LOS would that have?
TADI Response: Though our volume exhibits show no cross traffic to/from Taco Bell from/to Shady Lane (Exhibit 4-4), the traffic analysis does include at least one trip crossing in either direction during each of the peak hours. It is the traffic on County Line Road that is primarily affecting the LOS of movements at the intersection. Per your request, a sensitivity analysis will be forwarded via technical memorandum to cross traffic.
g. What analysis, if any, was done of the queuing forming at and behind the drivethrough window and what impact those vehicles might have on the vehicles queuing at the driveway waiting to exit the property?
TADI Response: No queuing analysis was done of the queue forming at and behind the drive-through window. Based on the trip generation, an available stacking space for 9 -vehicles from the window to the end of the drive thru lane, and an additional distance behind that queue to the driveway of 180 -feet, we do not anticipate traffic from the drive-through to impact queueing at the driveway for those waiting to exit the property.
h. What is your (TADI's) assessment of the proposed site layout with respect to the arrangement of the parking stalls, drive isles, drive-through lanes, exit lanes, truck turning movements (found on Sheet TT)?
TADI Response: Based on the trip generation, and because deliveries will be restricted by times of day outside the peak use of the restaurant, we find the site layout to be acceptable for traffic operations.
i. Why are the east-looking sight line requirements for an SUV (540 feet) different from those of a lower profile passenger vehicle (415 feet) as indicated in Ex 5-2a \& 5-2b? Intuitively the reverse would be true given the better visibility provided by an SUV. Is it because of the bridge railing getting in the way?
TADI Response: Per TIA Chapter V, Part D, D1, the two design vehicles are passenger vehicles ("P-vehicles") and single-unit trucks ("SU vehicle"). Examples of P-vehicles include passenger cars, vans, sport utility vehicles, and pick-up trucks. Examples of SU-vehicles include utility trucks and UPS-style trucks. An SU-vehicle typically takes a longer time to get up to speed due to its load, but the driver's eye is also higher off the road allowing it to see over obstructions like the bridge railing towards oncoming traffic. As discussed over the phone, Exhibits 5-2a and 5-2b are attached to this response and now include notes to help describe the types of vehicles shown in each exhibit. No other changes were made to these exhibits.
j. In Ex 5-2a the top image indicates that the minimum required "ISD" sight distance looking east of 415 feet for passenger vehicles is NOT met because only 215 feet can be achieved. Similarly, the bottom image indicates that the minimum required "ISD" distance of 415 feet is NOT met even after moving the vehicle 5 feet into the outer travel lane of County Line Road... which isconsistent with the "Recommended Modifications" shown on page 2 and Ex 1-3. So, are you suggesting that even though the recommended curb modification to County Line Road does NOT provide the minimum recommended ISD sight distance for passenger vehicles, sight conditions are at least improved? And that should be sufficient?
TADI Response: This condition is addressed in TIA Chapter V, Part D, D2. In short, the desired distance from the edge of the traveled way to a driver's eye is 14.5 -feet. At this distance, a P-vehicle motorist can only see 215 -feet street to the east on CTH Q. Per AASHTO, nearly all of the U.S. passenger car population is built such that a motorist's eye is 8 -feet or less from the front of the car. That is, moving the bridge railing north and adjusting the curb line along $\operatorname{CTH} Q$ is expected to provide a distance equal to or greater than 8 -feet, thus improving lines of sight such that a motorist does not need to move the front of their vehicle into the travel way to see the 415foot distance.
k. Ex 5-2b shows the minimum required "ISD" sight distance looking east for SUV's is 540 feet and that distance is met, but only by requiring the driver to look "behind" (left of) the bridge railing between it and the trees that extend acrossthe driver's view from the river. Respond to the following:
i. Is it reasonable and acceptable to require drivers to do these sorts of visual gymnastics in order to determine that a sight distance requirement is achievable?
TADI Response: No visual gymnastics are necessary. What TIA Exhibit 5-2b shows is the position of an SU-vehicle (UPS-type truck) at the desired eye
motorist eye height of 7.6-feet above the driveway pavement and 14.5feet behind the traveled way. As addressed in TIA Chapter V, Part D, D2, ISD is adequate for an SU-vehicle.
ii. Using this photo image, it appears that a vehicle may be visible at the 540' distance if the driver looks behind the railing and the trees are cut down, trimmed, or during "leaf-off" seasons of the year. But it also appears that the observed vehicle would likely be hidden by the railing as it travels toward the driver. Doesn't this nullify the conclusion that the 540' ISD sight distance is met? It seems unreasonable to conclude that the 540' distance is simply met because a driver can see an approaching vehicle at a 540 feet distance, but then can't see the same vehicle as it travels behind the railing and then re-emerges at a distance of only 215 feet (an estimate using the image in 5-2a).
TADI Response: No, this information does not nullify the results. As indicated in TIA Chapter V, Part D, D1, and in the response to comment 1(i) above, P-vehicles and SU-vehicles have different requirements per AASHTO.
iii. One of the "recommended modifications" is to remove the trees and other vegetation along the bridge. Given that there are trees on both sides of the river and not necessarily easily accessible, who do you envision will do this sort of regular landscaping-type maintenance? Washington County? Taco Bell?
TADI Response: It is our understanding that the vegetation and trimming of trees will be a responsibility of Taco Bell.
iv. Another "recommended modification" is to "correct" by moving a portion of the west end of the bridge railing or fence (as referred to in Ex 1-3) "... such that the westernmost point is adjusted north". But the "line of sight" shown in Ex 1-3 with the orange dashed line is incorrectly positioned south of the fence when compared to the line of sight shown in Ex 5-2b... which shows the object at a distance of 540 feet visible from north (behind) the fence. If the westernmost end of the fence/railing were moved to the north, it would likely obstruct the line of sight even more. TADI Response: The relocation of the bridge railing and the line of sight shown in Exhibit 1-3 address the ISD deficiency for P-vehicles. Recall that, due to the layout of CTH Q (higher grade to the east), the height of the railing, and the required 7.6 -feet eye height for an SU-vehicle, an SUvehicle will have the ability to see over the railing towards oncoming traffic to that longer 540-foot distance without an eclipsing effect from the railing.
I. Ex 5-2c shows the minimum required "ISD" sight distance looking west as 305 feet, but the blaze orange object appears to be already out into the drive lanes of County Line Road. Shouldn't the object be visible at the driveway?
TADI Response: TIA Exhibit 5-2c shows stopping sight distance (SSD), which is the distance at which a motorist traveling at 5 mph over the posted speed limit can perceive and identify an object in the road, take action to apply the brake, and come to a complete stop without striking the object. That is why the object is shown at the edge of the road in TIA Exhibit 5-2c - it illustrates that the driver on CTH Q can see
the object on the road and, thus, has adequate time to come to a complete stop if necessary.
m. Ex 5-2c shows the minimum required "ISD" sight distance looking west as 305 feet, but the blaze orange object appears to be already out into the drive lanes of County Line Road. Shouldn't the object be visible at the driveway?
TADI Response: The reason the objects are shown in blaze orange, circled, and then also shown with a zoom-in window has nothing to do with sight distance conditions and everything to do with scaling of the photograph and drawing the reader's attention to what they need to be seeing.
n. Village staff remains concerned with the proposed access. Although already existing, the single driveway serves a small multi-tenant building with uses that generate little traffic by comparison to the proposed fast-food restaurant. This is supported by the TIA. Staff continues to recommend that you explore a 2nd access driveway on County Line (subject to Washington County review and approval). Specifically, one that involves an enter-only driveway (ideally the existing) and a separate exit-only driveway further west on the site. The TIA supports the fact that site vision looking to the west from exiting traffic is poor... even if barely meeting the site distance requirements AFTER modifying the curb location on County Line Road (or requiring SUV drivers to look behind the bridge railing).
TADI Response: Example memorandum of understanding (MOU) language was obtained from WisDOT and emailed to you on February $11^{\text {th }}$. The information was obtained and forwarded at your request in case you wish to tie intersection safety or operations to future access restrictions, if necessary. Additionally, and at the request of the County and the Village, conceptual layouts for the median are attached to this response letter in the case that the County or Village wish to consider access restrictions in the future. These example concepts include attached Exhibit A) restricting the median to left-in/right-in/right-out for both Taco Bell and Shady Lane, attached Exhibit B) restricting the median to right-in/right-out for Taco Bell and left-in/right-in/left-out/right-out for Shady Lane, and attached Exhibit C) restricting the median to left-in/right-in/left-out/right-out for Taco Bell and right-in/right-out only for Shady Lane. If any of these concepts are implemented, impacted movements can travel downstream and perform legal U-turns at existing traffic signals. Impacted motorists to/from Shady Lane have the additional choice to revise their route by using Premier Lane or Rivercrest Drive to complete their movements. Note that TADI does not recommend a signal at this location due to the proximity of the traffic signal at Fleet Farm to the west and at the shopping center to the east.
2) The layout of the site is extremely poor in terms of site circulation for delivery and service trucks. There should always be adequate space on-site for all truck operations and not just when you assume that all service trucks will arrive to do their business after-hours when no other vehicles or customers are in the parking lot. Adequate space means that all truck operations should be able to be performed entirely on-site and not off the public street system. There should also be separation of delivery traffic from general customer traffic to the greatest extent possible. This site is proposed to be entirely re-developed and as such should be designed with these site design elements in mind. The truck turning exhibit clearly shows that delivery trucks will NOT be able to navigate on-site without jumping curbs and clipping cars... and only if the truck can start from middle travel lane and end heading eastbound. Consequently, one of the problems that is very likely to occur is that both the inexperienced delivery driver not familiar with this site and the experienced
driver who is familiar with this site but arrives during business hours is going to park their truck in the outermost "auxillary" lane on County Line Road, turn on the flashers and hand-truck the product and supplies into the store by way of the new curb ramp and sidewalk "shortcut" being added to the site (see Sheet C1.1). While this may be possible to do today since the painting of this auxillary lane is such that drivers are not supposed to use it as a drive lane (and only for left-turns into Fleet Farm at the signalized intersection), Washington County is anticipating increases in traffic over time such that it may need to be converted to a full drive lane.
Excel Response: Taco Bell management has confirmed that deliveries will be occurring during off-hours. This is why the truck turn exhibit shows the delivery vehicle utilizing the entire parking lot area. In addition, the curb that the truck is shown driving over is $18{ }^{\prime \prime}$ mountable curb that is specifically designed for truck traffic to drive over.
3) The revised Landscaping along the street yard abutting County Line Road is very much improved. However, given the plan to retain the $18^{\prime \prime}$ retaining wall, all of the proposed landscaping except for the street trees along the south edge will behidden from view and provide no visual enhancement to the site from public way. What can you do to address this?
Excel Response: Shrub plantings have been revised such that they are shifted north and further away from the retaining wall/fence so that they are more visible from the public way. Also, 6 additional ornamental trees have been provided along the south end of the site to provide better visual enhancement along the frontage of County Line Road.
4) The wetland disturbance mitigation plan and information does not include the amount of area impacted within the 75 ' navigable waterway setback. This is a significant oversight and needs to be addressed. The notion that this requirement would be completely ignored because the re-developed site will impact the 75 ' setback to approximately the same extent as the previous development is disconcerting. While there was some discussion at the pre-application meeting about this fact, Staff did not instruct the applicant to ignore these requirements altogether nor provide some sort of exemption, stated or implied. The wetland mitigation proposal is weak to begin with, but it is a start given the site constraints... but the 25^{\prime} wetland setback is the least impacted setback areas of the two that apply. If the developable portion of the site is too small to accommodate the proposed development under current site development requirements, then maybe this is not a suitable site. Let us know if we need to discuss alternative strategies to address the 25 ' wetland and 75 ' navigable waterway setback regulations and requirements. Excel Response: The wetland disturbance mitigation plan has been updated to include compensation for the area of disturbance within the 75 ' navigable waterway setback. In addition to the vegetated filter strip, invasive species management involving common buckthorn removal is proposed in the wooded area located north of the proposed development and west of the Menomonee River. The wetland mitigation plan exhibit has been updated along with the SWM narrative. This information will be incorporated into the construction documents on the landscape plan (C1.4) and detailed in the plan specifications (CO.2).
5) The parking lot setback near the driveway entrance narrows to 6.6 feet where a minimum of eight (8) feet is required. It appears to have been widened, but there is no specific call out to show that it meets the minimum.
Excel Response: The drive aisle in this location was previously reduced from 26^{\prime} wide to 24^{\prime} wide with the radius adjusted to meet the minimum 8^{\prime} setback. A dimension is provided on the site plan from the back of curb to the property line showing that this
meets the minimum (8.07^{\prime}).
6) The issue of vehicles queuing at/behind the drive-through window during lunch time and other peak traffic generation periods for the restaurant remains a concern. Designating the northernmost four (4) parking stalls for "employees only" is only a bandage for the problem. Further, the narrative explanation that the new facility will have less queuing at the drive-through window because the new facility will be more efficient due to better technology and improved workspace is not any more convincing than if you said the new store will have new employees that are more motivated and capable of working faster. Can you look at alternatives for relocating the dumpster enclosure or other parking and/or building reconfigurations that will move drive-through traffic to the perimeter of the parking lot and not impacting circulation within it?
Excel Response: Taco Bell management has confirmed that this proposed solution of designating the northernmost 4 stalls as "employee only" is a viable solution due to the fact that shift changes will not occur during the peak hour when additional que spaces would be needed. Taco Bell is comfortable with the proposed layout.
7) The addition of a second tower element improves the appearance, but overall, the architecture and materials remain plain and uninspiring. Can you add some degree of physical articulation along the east and west elevations and not just color changes of the same material?
Excel Response: The building architecture conforms to Taco Bell's current approach to cost effective design and construction. In response to preliminary review comments about the plainness of the building design, the concession was made to add a second tower element as suggested by the Village of Germantown planning staff. Any further articulation of the building facades, however, will deviate from the cost effectiveness of the design established by Taco Bell. Regarding exterior materials, the prototype building is intended to be clad in fiber cement siding. In consideration for location and climate, the decision was made to construct the proposed Germantown Taco Bell in brick veneer to provide a more durable and longer lasting building. With that said, the project is respectfully submitted as currently designed.
8) Will the murals on the east and west elevations be changed out on a regular basis or if the color/images fade? Is there a regular program or can the Village have some say in when the murals should be changed for something new? Excel Response: The murals are a component of the building design and are intended to remain until such time the building undergoes renovation. With respect to color/image fading, the murals are comprised of two sheets of pre-painted aluminum bonded to a solid polyethylene core. The images are printed using UV digital inks with a clear UV laminate to protect against fading. The panels are then installed using rust free stainless steel or galvanized hardware.

Public Works/Village Engineer

9) Please refer to the $2^{\text {nd }}$ review memo from the Director of Public Works dated January 6, 2021 for additional comments the various plans. These corrections will appear in the staff report as recommended conditions of approval but can be made to the final set of engineerstamped plans.
Excel Response: Understood.

Engineering Department Memorandum:

General Comments

1) The submitted plans have been reviewed for general conformance with State and Village design guidelines. Additional comments could arise as a result of the plan completion and modifications. The items listed below will need to be fully resolved before the Engineering Dept. can recommend a formal approval of the plans and permit for construction. Excel Response: Understood.
2) As-builts prepared to Village standards shall be prepared and provided to the Village post-construction (for all applicable items).
Excel Response: Understood.
3) A professional engineer's original seal is to be affixed, signed and dated on the final set of construction plans.
Excel Response: Understood. Final "Issued For Construction" stamped plans will be provided upon local approval.

Water Utility Comments

1) Sheet Number C0.2 under Division 33 Utilities there needs to be a letter added " L " to call out for submittal of materials for review and approval by the Engineering/Village Utilities.
Excel Response: Plan specifications updated requiring shop drawing submittals for review and approval by design engineer and Village Engineering/Utility Department.
2) Sheet Number C0.2 under Division 33 Utilities there needs to be a letter added " M " to call out the GPS coordinates need to be taken for any utilities tying into the village systems. The survey points need to be captured in NAD83 with each GPS point classified by a written description in the excel upload file and sent to our GIS provider Ruekert and Mielke. For the water service, GPS the tap, the lead and the curb stop. Also GPS the tracer wire box on the outside of the building.
Excel Response: Plan specifications updated with above information. Note on C1.3 also updated as needed.
3) Letter I of the Division 33 Utilities, Tracer wire will be 14 gauge not 10-14 gauge. Excel Response: Plan specifications updated to indicate use of 14 gauge tracer wire.
4) Add a note to the plans requiring the contractor to schedule a preconstruction meeting with the Water Utility prior to starting construction.
Excel Response: Note added to both the plan specifications and sheet C1.3

Wastewater Utility Comments

1) Existing sampling manhole may be reused with the following modifications. Install 2' barrel section below the cone and reconstruct the chimney to current Village standards. Add current Village sampling manhole detail to the plans to show the requirements for chimney reconstruction.
Excel Response: Village of Germantown standard sampling manhole detail added to sheet C1.3.

C1.1 Civil Site Plan

1) Improvements proposed in the ROW shall be reviewed and approved by Washington County. Provide a copy of the County approval.
Excel Response: Understood. A copy of approval letter/permit will be provided upon receipt.

Please accept for review and approval. Please let us know if you have any comments, questions, or need additional information.

Sincerely,

Jason Dave, P.E.
Excel Engineering, Inc.

Date: February 22, 2021

Technical Memorandum

To: Jeffrey W. Retzlaff, AICP, Director
Village of Germantown, WI
From: Michael May, P.E. PTOE
cc List: Scott Schmidt, Director of Public Works
Washington County
Subject: Taco Bell Sensitivity Analysis
CTH Q \& Shady Lane

PART A - INTRODUCTION

A traffic impact analysis (TIA) dated December 22, 2020, was submitted to the Village of Germantown and Washington County for a 1,786-sf Taco Bell proposed to be located along the north side of CTH Q at Shady Lane.

At the request of the Village and County, a sensitivity analysis was performed to determine approximately when (what year) the northbound left-turn/through movements from Shady Lane may be expected to deteriorate to LOS E or LOS F, as well as to determine approximately when the southbound left-turn/through/right-turn movements from the proposed Taco Bell may be expected to deteriorate to LOS E or LOS F.
This technical memorandum summarizes the methods and results of the sensitivity analysis.

PART B - SENSITIVITY ANALYSIS

D1. Methodology

As identified in the TIA, the Saturday midday peak hour is the critical peak hour for the CTH Q \& Shady Lane/Taco Bell Driveway intersection. Therefore, the Saturday peak hour was used in the sensitivity analysis.
Based on discussions with WisDOT, the straight-line annual growth rate along CTH Q is expected to be less than $0.5 \%(0.005)$. An email from WisDOT documenting this growth rate was forwarded to the Village and County by TADI on February $11^{\text {th }}$.
At the suggestion of the Village in a comments letter dated January $19^{\text {th }}$, TADI increased the cross traffic between Shady Lane and Taco Bell. A volume of 5 vehicles per hour (vph) both in and out of Taco Bell was utilized. A reduction in other movements to/from Taco Bell was not taken so-as to represent a higher volume scenario.
All other movements at the intersection were then incrementally increased using a straight-line annual growth rate of $0.5 \%(0.005)$. The increase was applied using the formula $\mathrm{F}=\mathrm{P}(1+\mathrm{in})$,
where " P " is the Year 2021 build traffic volume shown in the TIA, " i " is the annual growth rate of 0.005 , " n " is the number of years into the future, and " F " is the resulting traffic volume. The value " n " was increased until the northbound or southbound approaches changed to LOS E (representing the capacity of a movement) or LOS F (representing demand exceeding capacity). When a change to LOS E or LOS F occurred, the value of " n " was document.

D2. Results

The following are the results based on the methodology previously outlined.

- Year 2021 - The northbound left-turn/through movement passes the LOS D/E threshold (operates at LOS E). This operation is due to the additional cross traffic assumed between Shady Lane and Taco Bell. It is important to note that the average vehicle delay associated with this operation is reported as 35.0 -seconds, which represents the LOS D/E threshold (LOS D is defined as 25.0 to 34.9 seconds, LOS E is defined as 35.0 to 50.0 seconds). Additionally, this represents operations for the highest peak 15 minutes of the highest peak hour of the week. Making modifications to address this operation is not necessary. The northbound queue is expected to be approximately 3 vehicles and the southbound queue is expected to be approximately 1 vehicle at this point in time.
- Year 2043 - The northbound left-turn/through movement passes the LOS E/F threshold (operates at LOS F). This operation accounts for an approximate 11% increase to the Year 2021 traffic volumes at the intersection. The northbound queue is expected to be approximately 4 vehicles and the southbound queue is expected to be approximately 2 vehicles at this point in time.
- Year 2059 - The southbound left-turn/through/right-turn movement passes the LOS D/E threshold (operates at LOS E). This operation accounts for an approximate 19% increase to the Year 2021 traffic volumes at the intersection. The northbound queue is expected to be approximately 5 vehicles and the southbound queue is expected to be approximately 2 vehicles at this point in time.
- Year 2077 - The southbound left-turn/through/right-turn movement passes the LOS E/F threshold (operates at LOS F). This operation accounts for an approximate 28% increase to the Year 2021 traffic volumes at the intersection. The northbound queue is expected to be approximately 7 vehicles and the southbound queue is expected to be approximately 3 vehicles at this point in time.

Note the LOS operations and traffic queues are based on estimated delays and are not a function of each other. That is, LOS does not affect approach queues and approach queues do not affect LOS.

D3. Other Considerations

Recall that the results include additional cross traffic between Shady Lane and Taco Bell, as well as assume a straight-line annual growth rate of 0.5% for all movements at the intersection. It is important to note that traffic may increase at a higher or lower rate, or may even decrease over time. Additionally, traffic may increase or decrease at different rates for individual movements, and motorists may find other routes more desirable as delays increase (e.g., motorists may
reroute from Shady Lane to Premier Lane or Rivercrest Drive). The results documented in this memorandum are approximations.

Other variables that may impact operations include traffic signal timings along CTH Q. The latest traffic signal timings aid operations at CTH Q \& Shady Lane/Taco Bell Driveway by metering traffic and creating gaps in the traffic stream. It is recommended to maintain the traffic signal system to continue aiding not only traffic flow along CTH Q, but operations at stopcontrolled intersections along the corridor too.

Lastly, based on the results of this analysis, other movements at the CTH Q \& Shady Lane/Taco Bell Driveway intersection are expected to continue to operate desirably at LOS D or better conditions.

PART C - CLOSING

Should any questions or comments arise regarding the results of the sensitivity analysis, please feel free to contact Michael May, P.E. PTOE at 414-807-1912 or mmay@tadi-us.com.

RIVE THRU ELEVATION

WALK UP ELEVATION

TION $14=1=1.0 \cdot \mathbf{A}$

	Dane thru wnow. SEE SHETEA10 AND A1.
	storefront, Trical.
Swich	
Amma.	
	wall lantean.
13. Cozfllervanve cover. SEE detallamar	
Pant doora An Prame to match bick.	
16. concreme curb	
17. Lamss Tonsue roof overflow.	

19. Wall Pack lıar fexuve.
20. STooferoont door. refeg to door scheoule sheit al

Hose bib locaton. reefero pummeng obammgs and detal

24. Provive EnNox box verfry Locatoon and Tre with ath

PROPOSED NEW BUILDING FOR:

SUNDANCE - TACO BELL

GERMANTOWN, WISCONSIN

LEGEND

SHEET	SHEET TITLE
${ }^{0} 0.1$	CMIL Covir Sher
co.2	cvil secificato sher
c. 1.0	Exstinc site An demolion Pun
${ }^{\text {c.1. }}$	STIEPLAN
${ }^{\text {c. } 12}$	CRROING AND ERSLION Control Pan
${ }^{\text {c1. }}$	UTIUTPLTM
${ }^{\text {c. }}$. 4	LnNSCAPE AN Destortion plan
${ }^{\text {c. }}$.	RNLIMG relocatoon pla
${ }^{\text {c.2 }}$	defals
${ }^{\text {c. } 21}$	defals
${ }^{\text {c22 }}$	deflus
${ }^{\text {c23 }}$	Defals
${ }_{\text {PxP }}$	Ste Phoromeric PLuN

DIVISION 33 UTLLITIES

331000 STte ututies

 Co sin in

"

Rex

CIVIL SPECIFICATION SHEET

CIVIL EXISTING SITE AND DEMOLITION PLAN

$E x \in \mathbb{x}$

Punty une road (C.T.H. "Q")

RELOCATE EXISTING RAILING TT THE NORTH BY 2'. SECURE
RALLNG TO NEW CONCETE IN THE SAME MANNE THAT THE EXISTING RAILING IS ANCHORED. UTLIIZE EXISTING
EQUIPMENT/HARDWARE OR PROVIDE NEW STAINLESS STEEL
HARDWARE IF NEEDED. GROUT SEAL EXISTING ANCHOR POSt
HOLES AS NEEDED.

NORTH
THICKENED EDGE CONCRETE DETAIL

$\frac{\text { RAISED WALK DETAIL }}{\text { No SCAAE }}$

ean

ADA SIDEWALK RAMP DETAIL

$18^{\prime \prime}$ MOUNTABLE CURB \& GUTTER DETAIL

HANDICAP SIGNAGE WITH CONCRETE BASE DETAIL

$\frac{\text { STOP SIGN WITH CONCRETE BASE DETAIL }}{\text { NO SCALE }}$

BOLLARD DETAIL

$\frac{\text { MENU BOARD DETAIL }}{\text { NOSCAEE }}$

$\frac{\text { DUMPSTER SCREENING DETAIL }}{\text { No SCALE }}$

$\frac{\text { GATE DETAIL }}{\text { No scalle }}$

FXCE

- (1) (1)

IVIL SITE PHOTOMETRIC PLAN

Delivery Truck (IN)

Site Photos
Existing building to be demolished.

County Line Road Site

Professionally Assured Wetland Delineation Report

Project Number: WSH20-011-01
Property Address: N96W18058 County Line Road, Village of Germantown, Washington County, Wisconsin

Parcel ID: 333999

September 11, 2020

Report Request by

ExCEL ENGINEERING.

100 Camelot Drive
Fond du Lac, Wisconsin 54935

Field Work Certification:

Ben J LaCount, PLS, Planner, Wetland Scientist
Wisconsin DNR Professional Assured Wetland Delineator Lead Wetland Delineator
(920) 265-4105 ben@evergreenwis.com

Shyanh P Banker, Environmental Specialist
(920) 915-2629 shyann@evergreenwis.com

Table of Contents

Executive Summary
1.0 Introduction 1
1.1 Purpose 1
1.2 Personnel 1
2.0 Methodology 1
2.1 Resources 1
2.2 Equipment Used 2
2.3 Vegetation 2
2.4 Soils 2
2.5 Hydrology 2
3.0 Site Characteristics 3
3.1 Land Use 3
3.2 Topography 6
3.3 Precipitation 7
3.4 Wetland Mapping 10
3.5 Mapped Soils 12
4.0 Field Investigation 14
Wetland 1 14
Upland 16
4.1 Hydrology Assessments with Aerial Photographs 17
4.2 Rare Species and Natural Communities 18
4.3 Mapping 18
5.0 Conclusion 18
6.0 Disclaimer 18
7.0 References 19
Appendices
Appendix A - Site Maps
Appendix B - Site Pictures
Appendix C - Original Survey, Notes, and Bordner Survey
Appendix D - Historic Aerial PhotographsAppendix E - NRCS County Soil Survey ReportAppendix F - Precipitation Information
Appendix G - Wetland Determination Data Sheets

Executive Summary

Evergreen Consultants LLC (Evergreen) was retained by Excel Engineering Inc., to perform a professionally assured wetland delineation. The delineation/project area is part of Washington County Tax Parcel 333999, located in part of the Southwest $1 / 4$ of the Southwest $1 / 4$ of Section 33 of Township 09 North, Range 20 East, located at N96W18058 County Line Road, Village of Germantown, Washington County, Wisconsin.

The project area is shown on the Wetland Delineation Map as the Site Boundary, hereafter described as the "Site". The Wetland Delineation Map is in Appendix A. Evergreen was directed to delineate the project area for future planning purposes. The property had been a farmstead until redeveloped in 1990. The Menomonee River is adjacent to the Site.

The wetland delineation was certified complete on September 11, 2020 by Benjamin J La Count, PLS, Wisconsin DNR Professionally Assured Wetland Delineator, with assistance from Shyann P Banker, Environmental Specialist. Mr. La Count was the Lead Wetland Delineator for the project.

One wetland area was identified during fieldwork:

- Wetland 1 is a wooded stream terrace adjacent to the Menomonee River and is 4,250 square feet within the Site Boundary.

Benjamin J LaCount is a WDNR Professionally Assured Wetland Delineator and WDNR concurrence is granted for five years.

Benjamin $\sqrt{\text { LaCount, PLS }}$
WI Professionally Assured Wetland Delineator Lead Wetland Delineator

Shyanh P Banker
Environmental Specialist

1.0 INTRODUCTION

1.1 Purpose

Evergreen was retained by Excel Engineering Inc. to perform a professionally assured wetland delineation.

One wetland area was identified during fieldwork:

- Wetland 1 is a wooded stream terrace adjacent to the Menomonee River and is 4,250 square feet within the Site Boundary.

1.2 Personnel

The wetland delineation was certified complete on September 11, 2020 by Benjamin J La Count, PLS, Wisconsin DNR Professionally Assured Wetland Delineator, with assistance from Shyann P Banker, Environmental Specialist. Mr. La Count was the Lead Wetland Delineator for the project.

Mr. LaCount is a Professional Land Surveyor and WDNR Professionally Assured Wetland Delineator and has over eleven years of experience conducting wetland delineations. Mr. LaCount has completed the Basic and Advanced Wetland Delineation Training, Basic Plant Identification for Wetlands and Grasses/Sedges/Rushes courses sponsored by UW-La Crosse Continuing Education/Extension. Mr. LaCount has also completed the Advanced Hydric Soils and Problematic Wetland Delineation courses conducted by the Wetland Training Institute and the Advanced Wetland Plant ID: Grasses/Sedges/Rushes and Aerial Photo Review courses conducted by the USACE and the University of Minnesota Wetland Delineator Certification Program.

Mrs. Shyann Banker, Environmental Specialist has four years of experience conducting wetland delineations. Mrs. Banker has completed the Basic and Advanced Wetland Delineation Training and Basic Plant Identification for Wetlands courses sponsored by UW-La Crosse Continuing Education/Extension.

2.0 Methodology

Wetland boundaries were determined based on the comprehensive wetland delineation method as defined in the Corps of Engineers Wetlands Delineation Manual (USACE, Waterways Experiment Station, Wetlands Research Program Technical Report Y-87-1) and the Regional Supplement to the 1987 Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Regions (NC/NE Regional Supplement) (USACE ERDC, 2012).

Soil data, aerial photographs and topographic information available on Washington County's GIS website were reviewed prior to the site visit to determine areas for investigation and included: areas shown as having hydric inclusionary soils as shown on the NRCS National Cooperative Soil Survey and the WDNR Surface Water Data Viewer. Vegetation, soils and hydrology were investigated during the Site visits to determine the location of wetland boundaries.

2.1 Resources

The following resources were used:
Site topography: USGS Quadrangle Maps Washington County 2015 LIDAR Topography
Soils: \quad Natural Resource Conservation Service (NRCS) Web Soil Survey (NRCS 2020).
Land Use: Historic and recent aerial photographs
Wetlands: Wisconsin Wetland Inventory (viewed via the Surface Water Data Viewer) National Wetland Inventory (NWI)

2.2 Equipment Used

The following equipment was used:
Six-foot stick tape
Soil auger, trenching shovel
Munsell soil color charts
Leica Zeno GG04 GPS

2.3. Vegetation

Vegetation was documented on the NC/NE Regional Supplement data forms. Percent cover of each species for the herbaceous stratum (5 -foot radius plot), shrub/sapling stratum (15-foot radius plot) and tree and woody vine stratum (30-foot radius plot) were estimated. Rectangular sample plots were used when plant communities would overlap using circular sample plots or when a community was narrower than the radius. Wetland indicator status was taken from the Lichvar, R.W. 2016, The National Wetland Plant List, State of Wisconsin 2016 Wetland Plant List. Dominant species were determined by applying the 50/20 rule. The Dominance Test Worksheet and Prevalence Index Worksheet were completed. Hydrophytic Vegetation Indicators were applied, and a decision was made regarding the dominance of hydrophytic vegetation.

2.4. Soils

Soil test pits were excavated with a trenching shovel and a soil probe to a depth of at least $24^{\prime \prime}$ at each sampling point. The presence and percentage of mottling, matrix color, and texture was documented on the NC/NE Regional Supplement data forms for each layer. The Munsell Soil Color Charts were used to determine the hue, value and chroma of observed moist soils. After the profile was documented it was determined if a hydric soil indicator was met at that sample point.

2.5. Hydrology

Before an on-site investigation, FSA aerial slides and aerial photographs were reviewed for the presence of surface water or saturated soil conditions. Each sample point was investigated for saturated soil conditions, water table and surface water and if present they were measured and recorded on the NC/NE Regional Supplement data form. The area was also investigated for Primary and Secondary Hydrologic Indicators as listed on the NC/NE Regional Supplement data form.

3.0 SITE CHARACTERISTICS

3.1 Land Use

The Original Survey shows the Site adjacent to the south section line. The Original Survey Notes describe the vegetation in this area as elm, sugar maple, beech, white ash, and white walnut.

Original Survey

Bordner Survey

The Bordner Survey shows the Site as cleared cropland and sedge marsh with the Menomonee River adjacent to the east and a road adjacent to the south. The Original Survey, Survey Notes and Bordner Survey are in Appendix C.

Aerial photographs from 1937, 1941, 1950, 1963, 1970, 1979-2002, 2005-2008, 2010-2011, 2013-2015, 2017, and 2018 were reviewed.

1937- Historic aerial photograph shows the site having a farm on the west and clear cropland on the east.

1979- Historical aerial photograph shows a road adjacent to the south, business development to the west and a new road to the south.

1990- Historic aerial photograph shows the site redeveloped and a parking lot added.

2018- The site shows two buildings with a parking lot.

3.2 Topography

The topography at the Site ranges from an elevation of 846 feet down to 836 feet. The topography of the Site slopes down towards the north half of the Site, draining to the Menomonee River. The Topographic Map is in Appendix A.

Topographic Map

3.3 Precipitation

Precipitation information was reviewed from the Hartford 2 W, Washington County, WI Station. A 90 Day Antecedent Precipitation Rolling Total from mid-June through mid-September 2020 is shown below. Precipitation from the middle of June was in the normal range for a few days and then dropped below normal for a few more days and then remained in the normal range until mid-August, with a few day spike above normal in mid-July. Precipitation was in the below normal range from mid-August until the end of August and then slowly rose to above normal precipitation range at the end of August, beginning of September prior to the Site visit. Raw precipitation data is in Appendix F. The antecedent precipitation for approximately 90 days prior to the Site visit in September was normal.

Chart 1. 90 Day Antecedent precipitation Rolling Total Summary between June-September 2020 in Washington County, Wisconsin
NRCS method - Rainfall Documentation Worksheet Hydrology Tools for Wetland Determination NRCS Engineering Field Handbook Chapter 19

Date	$9 / 18 / 2020$	Landowner/Project	WSH20-011-01
Weather Station	Hartford 2 W, W1	State	Wisconsin
County	Washington County	Growing Season	yes
Photo/obs Date	$9 / 11 / 2020$	Soil Name	Cw-Colwood silt loam

shaded cells are locked or calculated	Long-term rainfall statistics (from WETS table or State Climatology Office)							
	Month	30\% chance	30\% chance	Precip	Condition Dry, Wet, Normal	Condition Value	Month Weight Value	Product of Previous 2 Columns
1st Prior Month $=$	June	2.48	4.96	4.10	N	2	3	6
2nd Prior Month*	July	3.00	4.99	4.29	N	2	2	4
3 rd Prior Month*	August	2.69	4.44	3.78	N	2	1	2
	${ }^{\text {* }}$ compared to photo/observation date						Sum	12
	Note: If sum is							
		prior period has been drier than normal				Condition V		
	10-14	prior period has been normal				Normal $=2$		
						Wet $=3$		
	15-18	prior period has been wetter than normal						

Conclusions: prior period has been normal
Table 1. Precipitation Summary between June and August 2020 in Washington County, Wisconsin

Precipitation values are measured in inches.
Sources: National Oceanic \& Atmospheric Administration, Midwest Regional Climate Center

Palmer Hydrological Drought Index Long-Term (Hydrological) Conditions

September 2020: through September 12 2020*

Sources: National Oceanic \& Atmospheric Administration, Palmer Hydrological Drought Index The index shows that area as extremely moist.

3.4 Wetland Mapping

The Wisconsin Wetland Inventory (WWI), viewed via the Surface Water Data Viewer, and the National Wetland Inventory (NWI) were reviewed. The Surface Water Data Viewer shows the Site having hydric soil indicators throughout the entire site.

Surface Water Data Viewer

National Wetland Inventory Map
The National Wetland Inventory Map shows an freshwater forested/shrub wetland along the northeast portion of the site. The surface Water Data Viewer and National Wetland Inventory Maps are in Appendix A.

3.5 Mapped Soils

The NRCS Web Soil Survey of Washington County, Wisconsin, indicate the presence of the following soil types:

Report—Hydric Soils

Hydric Soils-Washington County, Wisconsin				
Map symbol and map unit name	Component	Percent of map unit	Landform	Hydric criteria
AtA-Ashkum silty clay loam, 0 to 2 percent slopes				
	Ashkum, drained	92	End moraines, ground moraines	2
	Peotone, drained	5	Depressions on ground moraines	2
Cw-Colwood silt loam, D to 2 percent slopes				
	Colwood	85	Lakebeds (relict)	2,3
	Pella	8	Drainageways	2,3
	Palms	7	Depressions	1,3
MtA-Mequon silt loam, 1 to 3 percent slopes				
	Ashkum	10	Depressions	2, 3

Report-Taxonomic Classification of the Soils

[An asterisk by the soil name indicates a taxadjunct to the series]

Taxonomic Classification of the Soils-Milwaukee and Waukesha Counties, Wisconsin	
Soil name	Family or higher taxonomic classification
Ashkum	Fine, mixed, superactive, mesic Typic Endoaquolls
Colwood	Fine-loamy, mixed, active, mesic Typic Endoaquolls
Hochheim	Fine-loamy, mixed, active, mesic Typic Argiudolls
Pella	Fine-silty, mixed, superactive, mesic Typic Endoaquolls

Taxonomic Classification of the Soils-Washington County, Wisconsin	
Soil name	Family or higher taxonomic classification
Ashkum	Fine, mixed, superactive, mesic Typic Endoaquolls
Colwood	Fine-loamy, mixed, active, mesic Typic Endoaquolls
Hochheim	Fine-loamy, mixed, active, mesic Typic Argiudolls
Mequon	Fine, mixed, superactive, mesic Udollic Endoaqualfs
Theresa	Fine-loamy, mixed, superactive, mesic Typic Hapludalfs

Note: NRCS County Soil Survey Report is in Appendix E.

4.0 Field Investigations

One wetland area was identified during fieldwork:

- Wetland 1 is a wooded stream terrace adjacent to the Menomonee River and is 4,250 square feet within the Site Boundary.

Determination Forms are in Appendix G.

Wetland 1: Wetland 1 (4,250 sq. ft . within the Site Boundary) is a wooded stream terrace adjacent to the Menomonee River and extends beyond the Site boundary to the north, east, and west.

Wetland 1 would be considered T3/S3/E2Kw (forested, broad-leaved deciduous/ scrub-shrub, broadleaved deciduous/ emergent-wet meadow, narrow-leaved persistent with wet soil, palustrine, floodplain complex). The wetland boundary for Wetland 1 is located along a topography break within a stream terrace. The stream terrace is adjacent to the Menomonee River and is approximately 3 to 4 feet lower than the adjacent upland and 1.5 feet higher than the current water level of the river. The wetland meets wetland criteria for hydrophytic vegetation, hydric soil, and wetland hydrology.

The primary hydrology indicator observed in Wetland 1 includes drift deposits (B3). The secondary hydrology indicators observed in Wetland 1 include geomorphic position (D2) and a positive FAC-neutral test (D5). The stream terrace/wetland 1 floods during high water periods.

Photo taken standing near T1A facing east along the Menomonee River.

Photo taken near T2A facing north towards the Menomonee River.
The dominant hydrophytic vegetation observed:

- Phalaris arundinacea (reed canary grass, FACW)
- Acer negundo (boxelder maple, FAC)
- Vitis riparia (riverbank grape, FAC)
- Rhamnus cathartica (common buckthorn, FAC)
- Fraxinus pennsylvanica (green ash, FACW)
- Salix interior (sandbar willow, FACW)
- Cornus alba (red osier dogwood, FACW)
- Laportea canadensis (Canadian wood nettle, FACW)

The soil in Wetland 1 meets hydric soil indicators depleted below dark surface (A11) and redox dark surface (F6). Depleted below dark surface (A11) was observed by the soils having a depleted layer, starting at least twelve inches from the dark soil surface and being at least six inches thick. The soils observed presented redox dark surface (F6), with a dark surface with prominent or distinct redoximorphic features within a layer at least four inches thick.

Upland: Upland within the Site is hillslope, sloping down to the stream terrace. Within the southwest corner of the Site is a building and associated parking lot. Most of the Site was filled/graded during development. The area near T2B had a lot of brick, rock, and glass visible on the surface.

Upland hillslope, sloping north to the stream terrace. Brick, rock, and glass on the surface. Area was likely filled during the development of the building and parking lot on the Site.

West property line facing south.

Mowed lawn adjacent to the stream terrace.

4.1 Hydrology Assessments with Aerial Photographs

Aerial photographs from 1937, 1941, 1950, 1963, 1970, 1979-2002, 2005-2008, 2010-2011, 2013-2015, 2017, and 2018 were reviewed. The 1937 aerial photograph shows the Site having a farm on the southwest corner of the Site having a farm within clear cropland in the east, with the Menomonee River to the north. The 1980 aerial photograph has visible fill piles in the southeast corner of the Site.

4.2 Rare Species and Natural Communities

No species or communities of concern were observed during site activities.

4.3 Mapping

The wetland boundaries were flagged with pink flags. Benjamin La Count, a Professional Land Surveyor, surveyed the wetland boundary. The surveyed wetland boundaries are shown on the Wetland Delineation Map located in Appendix A, Site Maps.

5.0 CONCLUSIONS

Investigation of the area determined that wetlands exist as shown on the attached figures and Wetland Delineation Map. The wetlands identified for this report may be subject to federal regulation under the jurisdiction of the U.S. Army Corps of Engineers, state regulation under the jurisdiction of Wisconsin DNR, and local jurisdiction under Washington County, and the Village of Germantown.

One wetland area was identified during fieldwork:

- Wetland 1 is a wooded stream terrace adjacent to the Menomonee River and is 4,250 square feet within the Site Boundary.

6.0 DISCLAIMER

If wetlands are proposed to be impacted a Section 404 Letter of Permission Authorization will need to be obtained from USACE and according to Section 281.36, Wisconsin Statutes and NR 299 and NR 103, Wisconsin Administrative Code a permit from the WDNR would be necessary.

Benjamin J LaCount is a WDNR Professionally Assured Wetland Delineator and WDNR concurrence is granted for five years.

7.0 References

Black, Merel R., and Judziewicz, Emmet J., Wildflowers of Wisconsin and the Great Lakes Region, A Comprehensive Field Guide, University of Wisconsin Press, Madison, WI, 2009

Board of Commissioners of Public Lands, Wisconsin Public Land Survey Records: Original Field Notes and Plat Maps, Madison, Wisconsin, 2020

Chadde, Steve W., Wetland Plants of Wisconsin, Second Edition, Steve Chadde, United States, 2013
Cochrane, Theodore S., Elliot, Kandis, and Lipke, Claudia S., Prairie Plants of the University of WisconsinMadison Arboretum, University of Wisconsin Press, Madison, WI, 2006

Curtis, Linda, Woodland Carex of the Upper Midwest, Curtis to the Third Productions, Lake Villa, IL, 2014
Czarapata, Elizabeth J., Invasive Plants of the Upper Midwest, an Illustrated Guide to Their Identification and Control, University of Wisconsin Press, Madison, WI, 2005

Eggers, Steve D., and Reed, Donald M., U.S. Army Corps of Engineers, St. Paul District, Wetland Plants and Plant Communities of Minnesota \& Wisconsin, 1997

Fassett, Norman C., A Manual of Aquatic Plants, University of Wisconsin Press, Madison, WI, 1940
Gleason, Henry A., Ph.D., and Cronquist, Arthur, Ph.D., Manual of Vascular Plants of Northeastern Google Earth Aerial Photographs and FSA Slides

Hipp, Andrew, Field Guide to Wisconsin Sedges, University of Wisconsin Press, Madison, WI, 2008
Holmgren, Noel H., Illustrated Companion to Gleason and Cronquist's Manual, Illustrations of the Vascular Plants of Northeastern United States and Adjacent Canada, The New York Botanical Garden, 1998

Judziewicz, Emmet J., Freckmann, Robert W., Clark, Lynn G., and Black, Merel R., Field Guide to Wisconsin Grasses, University of Wisconsin Press, Madison, WI, 2014

Knobel, Edward, Field Guide to the Grasses, Sedges, and Rushes of the United States, Dover Publications, Inc., Mineola, NY, 1977

Kopiztke, David A., and Sweeney, Dr. James M., Threatened and Endangered Species in Forests of Wisconsin, A Guide to Assist with Forestry Activities, International Paper Co, 2000

Lichvar, R.W. 2016. The National Wetland Plant List. ERDC/CRREL TR-12-11. Hanover, NH: U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory

Tekiela, Stan, Wildflowers of Wisconsin, Field Guide, Adventure Publications, Inc., Cambridge, MN, 2000
Tekila, Stan, Trees of Wisconsin, Field Guide, Adventure Publications, Inc., Cambridge, MN, 2002 U.S. Army Corps of Engineers (USACOE), Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, 2012
U.S. Fish and Wildlife Service, National Wetlands Inventory, 2020

United States and Adjacent Canada, Second Edition New York Botanical Garden, NY, 1991

United States Department of Agriculture Soil Conservation Service, Soil Survey of Washington County, Wisconsin, 1974

University of Wisconsin Digital Collections Center, Wisconsin Land Economic Inventory Maps (Bordner Survey), Madison, WI, 2020

University of Wisconsin, Wisconsin Historic Aerial Image Finder, 2020
USACE, Environmental Laboratory, Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, 1987

USACE, Minnesota Board of Water \& Soil Resources, Guidance for Offsite Hydrology/Wetland Determinations, 2016.

USDA, FSA, Service Center, FSA Slides for years 1981 through 2002. Washington County, WI
USDA, Natural Resources Conservation Service (NRCS), Field Indicators of Hydric Soils in the United States, Guide for delineating Hydric Soils, Version 5.01, 2003

USDA, NRCS, Web Soil Survey, 2020
Uva, Richard H., Neal, Joseph C., and DiTomaso, Joseph M., Weeds of the Northeast, Cornell University Press, Ithaca, NY, 1997

Vascular Plants of Northeastern United States and Adjacent Canada, The New York Botanical Garden, 1998

Voss, Edward G., Michigan Flora, Cranbrook Institute of Science, Bloomfield Hills, MI, 1972
Washington County, GIS, aerial photographs, topography, Washington County, WI
WDNR, Wisconsin Wetland Inventory Classification Guide, PUBL-W2-W2023, 1992
Wetland Training Institute, Inc., 2013 Pocket Guide to Hydric Soil Field Indicators, Wetland Training Institute, Inc., Glenwood, NM, 2013

Wisconsin Department of Administration, Basic Guide to Wisconsin's Wetlands and Their Boundaries, 1995

Wisconsin Department of Natural Resources (WDNR), Surface Water Data Viewer, 2020

Appendix A:

Site Maps
County Line Road Site Location Map N96W18058 County Line Road Village of Germantown Washington County, WI

Legend

Site Boundary

* Sample Point
- Picture Location

WTH Wetland Line
:
——Approximate OHWM
Open Water/River

\squareParcels

Legend

Site Boundary
T-T Wetland Line
FW. Wetland

- Approximate OHWM
${ }_{\circ}{ }^{\circ}$ O Open Water/ River
- WDNR Protective AreaParcels

County Line Road Wetland Delineation Map WDNR Protective Areas N96W18058 County Line Road Village of Germantown Washington County, W

Project: WSH20-011-01

County Line Road Topographic Map N96W18058 County Line Road Village of Germantown Washington County, WI

\square Site Boundary
-T. Wetland Line
\square Wetland
Open Water/ River

- Approximate OHWM \square Parcels

Legend

\squareParcels
Wetland Indicators
蔡 USDA Wetspots
[-] Maximum Extent Wetland Indicators Feet

Legend
Site Boundary
\square Parcels
\square Estuarine and Marine Deepwater
\square Estuarine and Marine Wetland
\square Freshwater Emergent Wetland
\square Freshwater Forested/Shrub WetlandFreshwater Pond
目
Lake
\square Other
\square Riverine

County Line Road National Wetland Inventory Map N96W18058 County Line Road Village of Germantown Washington County, WI

Project: WSH20-011-01

USA Soils Map Units

County Line Road Quadrangle Map N96W18058 County Line Road Village of Germantown Washington County, WI

Legend
Site Boundary

Appendix B:

Site Pictures

1- Standing near T1A.

3- Standing near T1B.

5- Standing near T2A.

6- Standing near T2B

7- Standing near T2B.

8- Standing near the northwest corner of the building.

9- Standing near the northeast corner of the parking lot.

10- Standing near the southeast corner of the Site Boundary.

Appendix C:

Original Survey, Notes, and Bordner Map

Project: WSH20-011-01

Range No. Vo \mathscr{E}, 4 th Meridian.
West swith side Section Hs $_{3}$ 1.00 Menominee Rivewto c SSE. 3.\% Blm 14 in Diameter - 4.00 Menconinued Bivarse E.tÉ.
26.08
3.3 .00
39.05
40.00 Seh quanter cection Posh

Elm 8 \& 39 É 12

44. 95 Angar 10 in Qiameter 48. or drail e w.ANT.
80.00 deh Pash Corner Sectionos2r433
beechlifssof 42
efhite Ashsan 36% in
Lanosolingfirst Aboons
sate-trhits aud Black Dall Lymis Sugav Beech tronwood
 clyste aurdfasle.

Original Survey Notes

Appendix D:

Historic Aerial Photographs

Site Boundary

1937 Aerial Photo

1950 Aerial Photo

1970 Aerial Photo

1980 Aerial Photo

1982 Aerial Photo

1984 Aerial Photo

1986 Aerial Photo

1988 Aerial Photo

1992 Aerial Photo

1994 Aerial Photo

1996 Aerial Photo

1998 Aerial Photo

2000 Aerial Photo

2002 Aerial Photo

2006 Aerial Photo

2008 Aerial Photo

2011 Aerial Photo

2014 Aerial Photo

2017 Aerial Photo

2018 Aerial Photo

Appendix E:

NRCS County Soil Survey Report

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for
Milwaukee and Waukesha Counties, Wisconsin, and Washington County, Wisconsin

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 12
Map Unit Descriptions. 12
Milwaukee and Waukesha Counties, Wisconsin 15
AsA—Ashkum silty clay loam, 0 to 2 percent slopes. 15
Cw-Colwood silt loam, 0 to 2 percent slopes 16
HmC2—Hochheim loam, 6 to 12 percent slopes, eroded 18
Ph—Pella silt loam, 0 to 2 percent slopes 19
Washington County, Wisconsin 21
AtA—Ashkum silty clay loam, 0 to 2 percent slopes 21
Cw-Colwood silt loam, 0 to 2 percent slopes 22
HmC2—Hochheim loam, 6 to 12 percent slopes, eroded 24
MtA—Mequon silt loam, 1 to 3 percent slopes 25
ThB2—Theresa silt loam, 2 to 6 percent slopes, eroded 26
Soil Information for All Uses 28
Soil Reports. 28
Land Classifications 28
Hydric Rating by Map Unit (WI) 28
Hydric Soil List - All Components 32
Hydric Soils 35
Taxonomic Classification of the Soils 38
References 40

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Milwaukee and Waukesha Counties,
Visconsin
Survey Area Data: Version 16, Jun 8, 2020

Soil Survey Area: Washington County, Wisconsin Survey Area Data: Version 20, Jun 8, 2020

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries

MAP LEGEND

MAP INFORMATION

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 1, 2019—Oct 12, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AsA	Ashkum silty clay loam, 0 to 2 percent slopes	2.4	10.2\%
Cw	Colwood silt loam, 0 to 2 percent slopes	1.3	5.4\%
HmC2	Hochheim loam, 6 to 12 percent slopes, eroded	0.1	0.4\%
Ph	Pella silt loam, 0 to 2 percent slopes	2.1	8.9\%
Subtotals for Soil Survey Area		5.9	25.0\%
Totals for Area of Interest		23.7	100.0\%
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AtA	Ashkum silty clay loam, 0 to 2 percent slopes	0.9	3.9\%
Cw	Colwood silt loam, 0 to 2 percent slopes	12.4	52.2\%
HmC2	Hochheim loam, 6 to 12 percent slopes, eroded	0.7	3.0\%
MtA	Mequon silt loam, 1 to 3 percent slopes	1.0	4.3\%
ThB2	Theresa silt loam, 2 to 6 percent slopes, eroded	2.8	11.6\%
Subtotals for Soil Survey Area		17.8	75.0\%
Totals for Area of Interest		23.7	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion
of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Milwaukee and Waukesha Counties, Wisconsin

AsA—Ashkum silty clay loam, 0 to $\mathbf{2}$ percent slopes

Map Unit Setting

National map unit symbol: 2ssrw
Elevation: 520 to 930 feet
Mean annual precipitation: 33 to 41 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 160 to 190 days
Farmland classification: Prime farmland if drained

Map Unit Composition

Ashkum, drained, and similar soils: 92 percent
Minor components: 8 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ashkum, Drained

Setting

Landform: Ground moraines, end moraines
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Concave
Parent material: Clayey colluvium over till

Typical profile

Ap-0 to 12 inches: silty clay loam
Bg1-12 to 29 inches: silty clay
2Bg2-29 to 54 inches: silty clay loam
2Cg - 54 to 60 inches: silty clay loam
Properties and qualities
Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20
to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 25 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 8.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: C/D
Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow
Hydric soil rating: Yes

Minor Components

Peotone, drained

Percent of map unit: 5 percent
Landform: Depressions on ground moraines
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow
Hydric soil rating: Yes
Orthents, clayey
Percent of map unit: 2 percent
Landform: Lake plains, ground moraines
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Urban land

Percent of map unit: 1 percent
Landform: Ground moraines
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Cw-Colwood silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2tjx2
Elevation: 570 to 1,020 feet
Mean annual precipitation: 31 to 37 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 110 to 194 days
Farmland classification: Prime farmland if drained

Map Unit Composition

Colwood and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Colwood

Setting
Landform: Lakebeds (relict)
Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Interfluve
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Loamy glaciolacustrine deposits over stratified silt and fine sand glaciolacustrine deposits

Typical profile

Ap-0 to 10 inches: silt loam
$B g-10$ to 24 inches: sandy clay loam
2Cg-24 to 79 inches: stratified very fine sand to silt

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 20 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 10.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: C/D
Forage suitability group: High AWC, high water table (G095BY007WI)
Other vegetative classification: High AWC, high water table (G095BY007WI)
Hydric soil rating: Yes

Minor Components

Pella
Percent of map unit: 8 percent
Landform: Drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Palms

Percent of map unit: 7 percent
Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

HmC2-Hochheim loam, 6 to 12 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2 t 03 r
Elevation: 900 to 1,340 feet
Mean annual precipitation: 31 to 33 inches
Mean annual air temperature: 43 to 46 degrees F
Frost-free period: 135 to 175 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Hochheim, eroded, and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hochheim, Eroded

Setting

Landform: Drumlins
Landform position (two-dimensional): Shoulder, summit
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Loamy till and/or calcareous, dense loamy till

Typical profile

Ap - 0 to 7 inches: loam
Bt -7 to 16 inches: clay loam
C - 16 to 33 inches: gravelly sandy loam
Cd - 33 to 79 inches: gravelly sandy loam

Properties and qualities

Slope: 6 to 12 percent
Depth to restrictive feature: 20 to 40 inches to densic material
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 60 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water capacity: Low (about 4.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: D
Forage suitability group: Mod AWC, adequately drained (G095BY005WI)
Other vegetative classification: Mod AWC, adequately drained (G095BY005WI)

Hydric soil rating: No

Minor Components

Theresa

Percent of map unit: 5 percent
Landform: Drumlins
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Crest
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No
Hochheim
Percent of map unit: 5 percent
Landform: Drumlins
Landform position (two-dimensional): Backslope, shoulder
Landform position (three-dimensional): Side slope, head slope
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

Ph—Pella silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2t044
Elevation: 590 to 1,100 feet
Mean annual precipitation: 29 to 37 inches
Mean annual air temperature: 43 to 55 degrees F
Frost-free period: 124 to 178 days
Farmland classification: Prime farmland if drained

Map Unit Composition

Pella and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pella

Setting

Landform: Drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Silty glaciofluvial deposits over calcareous lacustrine deposits and/or calcareous loamy till

Typical profile

Ap-0 to 11 inches: silt loam
$B g-11$ to 38 inches: silty clay loam

2Cg-38 to 79 inches: stratified loamy sand to silty clay loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water capacity: Very high (about 12.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2 w
Hydrologic Soil Group: B/D
Forage suitability group: High AWC, high water table (G095BY007WI)
Other vegetative classification: High AWC, high water table (G095BY007WI)
Hydric soil rating: Yes

Minor Components

Kendall

Percent of map unit: 7 percent
Landform: Drainageways
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

Lamartine

Percent of map unit: 6 percent
Landform: Drainageways
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

Palms, muck

Percent of map unit: 2 percent
Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Washington County, Wisconsin

AtA—Ashkum silty clay loam, 0 to $\mathbf{2}$ percent slopes

Map Unit Setting

National map unit symbol: 2ssrw
Elevation: 520 to 930 feet
Mean annual precipitation: 33 to 41 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 160 to 190 days
Farmland classification: Prime farmland if drained

Map Unit Composition

Ashkum, drained, and similar soils: 92 percent
Minor components: 8 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ashkum, Drained

Setting

Landform: End moraines, ground moraines
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Concave
Parent material: Clayey colluvium over till

Typical profile

$A p-0$ to 12 inches: silty clay loam
Bg1-12 to 29 inches: silty clay
2Bg2-29 to 54 inches: silty clay loam
$2 \mathrm{Cg}-54$ to 60 inches: silty clay loam
Properties and qualities
Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20
to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 25 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water capacity: Moderate (about 8.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2 w
Hydrologic Soil Group: C/D
Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow
Hydric soil rating: Yes

Minor Components

Peotone, drained

Percent of map unit: 5 percent
Landform: Depressions on ground moraines
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow
Hydric soil rating: Yes
Orthents, clayey
Percent of map unit: 2 percent
Landform: Lake plains, ground moraines
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Urban land

Percent of map unit: 1 percent
Landform: Ground moraines
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Cw-Colwood silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2tjx2
Elevation: 570 to 1,020 feet
Mean annual precipitation: 31 to 37 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 110 to 194 days
Farmland classification: Prime farmland if drained

Map Unit Composition

Colwood and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Colwood

Setting
Landform: Lakebeds (relict)
Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Interfluve
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Loamy glaciolacustrine deposits over stratified silt and fine sand glaciolacustrine deposits

Typical profile

Ap-0 to 10 inches: silt loam
$B g-10$ to 24 inches: sandy clay loam
2Cg-24 to 79 inches: stratified very fine sand to silt

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 20 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 10.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: C/D
Forage suitability group: High AWC, high water table (G095BY007WI)
Other vegetative classification: High AWC, high water table (G095BY007WI)
Hydric soil rating: Yes

Minor Components

Pella
Percent of map unit: 8 percent
Landform: Drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Palms

Percent of map unit: 7 percent
Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

HmC2-Hochheim loam, 6 to 12 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2 t 03 r
Elevation: 900 to 1,340 feet
Mean annual precipitation: 31 to 33 inches
Mean annual air temperature: 43 to 46 degrees F
Frost-free period: 135 to 175 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Hochheim, eroded, and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hochheim, Eroded

Setting

Landform: Drumlins
Landform position (two-dimensional): Shoulder, summit
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Loamy till and/or calcareous, dense loamy till

Typical profile

Ap - 0 to 7 inches: loam
Bt -7 to 16 inches: clay loam
C - 16 to 33 inches: gravelly sandy loam
Cd - 33 to 79 inches: gravelly sandy loam

Properties and qualities

Slope: 6 to 12 percent
Depth to restrictive feature: 20 to 40 inches to densic material
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 60 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water capacity: Low (about 4.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: D
Forage suitability group: Mod AWC, adequately drained (G095BY005WI)
Other vegetative classification: Mod AWC, adequately drained (G095BY005WI)

Hydric soil rating: No

Minor Components

Hochheim

Percent of map unit: 5 percent
Landform: Drumlins
Landform position (two-dimensional): Backslope, shoulder
Landform position (three-dimensional): Side slope, head slope
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

Theresa

Percent of map unit: 5 percent
Landform: Drumlins
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Crest
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

MtA—Mequon silt loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: g90z
Elevation: 790 to 1,250 feet
Mean annual precipitation: 32 to 35 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 145 to 165 days
Farmland classification: Prime farmland if drained

Map Unit Composition

Mequon and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mequon

Setting

Landform: Drainageways
Landform position (three-dimensional): Talf
Down-slope shape: Concave
Across-slope shape: Linear
Parent material: Loess over silty and clayey till

Typical profile

Ap - 0 to 7 inches: silt loam
Btg - 7 to 11 inches: silt loam
2Bt - 11 to 26 inches: silty clay loam
$2 C-26$ to 60 inches: silty clay loam

Custom Soil Resource Report

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.14 to $0.57 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 to 24 inches
Frequency of flooding: None
Frequency of ponding: Occasional
Calcium carbonate, maximum content: 40 percent
Available water capacity: High (about 10.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: C/D
Forage suitability group: High AWC, high water table (G095BY007WI)
Other vegetative classification: High AWC, high water table (G095BY007WI)
Hydric soil rating: No

Minor Components

Ashkum

Percent of map unit: 10 percent
Landform: Depressions
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

ThB2—Theresa silt loam, 2 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2szd7
Elevation: 660 to 1,290 feet
Mean annual precipitation: 31 to 35 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 150 to 195 days
Farmland classification: All areas are prime farmland

Map Unit Composition

Theresa, eroded, and similar soils: 83 percent
Minor components: 17 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Theresa, Eroded

Setting
Landform: Drumlins
Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Loess over loamy till and/or calcareous, dense loamy till

Typical profile

Ap-0 to 8 inches: silt loam
BE - 8 to 11 inches: silt loam
Bt1-11 to 16 inches: silty clay loam
2Bt2 - 16 to 35 inches: gravelly clay loam
2Cd - 35 to 79 inches: gravelly sandy loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: 24 to 40 inches to densic material
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 60 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2e
Hydrologic Soil Group: C
Hydric soil rating: No

Minor Components

Hochheim, eroded

Percent of map unit: 14 percent
Landform: Drumlins
Landform position (two-dimensional): Shoulder, summit
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

Lamartine

Percent of map unit: 3 percent
Landform: Drumlins
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

Soil Information for All Uses

Soil Reports

The Soil Reports section includes various formatted tabular and narrative reports (tables) containing data for each selected soil map unit and each component of each unit. No aggregation of data has occurred as is done in reports in the Soil Properties and Qualities and Suitabilities and Limitations sections.

The reports contain soil interpretive information as well as basic soil properties and qualities. A description of each report (table) is included.

Land Classifications

This folder contains a collection of tabular reports that present a variety of soil groupings. The reports (tables) include all selected map units and components for each map unit. Land classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

Hydric Rating by Map Unit (WI)

This Hydric Soil Category rating indicates the components of map units that meet the criteria for hydric soils. Map units are composed of one or more major soil components or soil types that generally make up 20 percent or more of the map unit and are listed in the map unit name, and they may also have one or more minor contrasting soil components that generally make up less than 20 percent of the map unit. Each major and minor map unit component that meets the hydric criteria is rated hydric. The map unit class ratings based on the hydric components present are: WI Hydric, WI Predominantly Hydric, WI Partially Hydric, WI Predominantly Nonhydric, and WI Nonhydric. The report also shows the total representative percentage of each map unit that the hydric components comprise.
"WI Hydric" means that all major and minor components listed for a given map unit are rated as being hydric. "WI Predominantly Hydric" means that all major components listed for a given map unit are rated as hydric, and at least one contrasting minor component is not rated hydric. "WI Partially Hydric" means that at least one major component listed for a given map unit is rated as hydric, and at
least one other major component is not rated hydric. "WI Predominantly Nonhydric" means that no major component listed for a given map unit is rated as hydric, and at least one contrasting minor component is rated hydric. "WI Nonhydric" means no major or minor components for the map unit are rated hydric. The assumption is that the map unit is nonhydric even if none of the components within the map unit have been rated.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.
If soils are wet enough for a long enough period of time to be considered hydric, they typically exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Vasilas, Hurt, and Noble, 2010).
The NTCHS has developed criteria to identify those soil properties unique to hydric soils (Federal Register, 2012). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria use selected soil properties that are described in "Field Indicators of Hydric Soils in the United States" (Vasilas, Hurt, and Noble, 2010), "Soil Taxonomy" (Soil Survey Staff, 1999), "Keys to Soil Taxonomy" (Soil Survey Staff, 2010), and the "Soil Survey Manual" (Soil Survey Division Staff, 1993).
The criteria for hydric soils are represented by codes, for example, 2 or 3 . Definitions for the codes are as follows:

1. All Histels except for Folistels, and Histosols except for Folists.
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Pachic subgroups, or Cumulic subgroups that:
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;
3. Soils that are frequently ponded for long or very long duration during the growing season.
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;
4. Map unit components that are frequently flooded for long duration or very long duration during the growing season that:
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;

Hydric Condition: Food Security Act information regarding the ability to grow a commodity crop without removing woody vegetation or manipulating hydrology.
References:
Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. February, 28, 2012. Hydric soils of the United States.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.
Vasilas, L.M., G.W. Hurt, and C.V. Noble, editors. Version 7.0, 2010. Field indicators of hydric soils in the United States.

Report-Hydric Rating by Map Unit (WI)

Hydric Rating by Map Unit (WI)-Milwaukee and Waukesha Counties, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
AsA	Ashkum silty clay loam, 0 to 2 percent slopes	97	WI Predominantly Hydric	Ground moraines

Hydric Rating by Map Unit (WI)-Washington County, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
AtA	Ashkum silty clay loam, 0 to 2 percent slopes	97	WI Predominantly Hydric	Ground moraines

Hydric Rating by Map Unit (WI)-Milwaukee and Waukesha Counties, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
Cw	Colwood silt loam, 0 to 2 percent slopes	100	WI Hydric	Depressions

Hydric Rating by Map Unit (WI)-Washington County, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
Cw	Colwood silt loam, 0 to 2 percent slopes	100	WI Hydric	Drainageways

Hydric Rating by Map Unit (WI)-Milwaukee and Waukesha Counties, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
Cw	Colwood silt loam, 0 to 2 percent slopes	100	WI Hydric	Drainageways

Hydric Rating by Map Unit (WI)-Washington County, Wisconsin							
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components			
Cw	Colwood silt loam, 0 to 2 percent slopes	100	WI Hydric				
HmC2	Hochheim loam, 6 to 12 percent slopes, eroded	0	WI Nonhydric				

Hydric Rating by Map Unit (WI)-Milwaukee and Waukesha Counties, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
HmC2	Hochheim loam, 6 to 12 percent slopes, eroded	0	WI Nonhydric	

Hydric Rating by Map Unit (WI)-Washington County, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
HmC2	Hochheim loam, 6 to 12 percent slopes, eroded	0	WI Nonhydric	

Hydric Rating by Map Unit (WI)-Milwaukee and Waukesha Counties, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
HmC 2	Hochheim loam, 6 to 12 percent slopes, eroded	0	WI Nonhydric	-

Hydric Rating by Map Unit (WI)-Washington County, Wisconsin				
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components
MtA	Mequon silt loam, 1 to 3 percent slopes	10	WI Predominantly Nonhydric	Depressions

Hydric Rating by Map Unit (WI)-Milwaukee and Waukesha Counties, Wisconsin								
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components				
Ph	Pella silt loam, 0 to 2 percent slopes	87	WI Predominantly Hydric	Depressions				

Hydric Rating by Map Unit (WI)-Washington County, Wisconsin							
Map Unit Symbol	Map Unit Name	Hydric Percent of Map Unit	Hydric Category	Landform Hydric Minor Components			
ThB2	Theresa silt loam, 2 to 6 percent slopes, eroded	0	WI Nonhydric				

Hydric Soil List - All Components

This table lists the map unit components and their hydric status in the survey area. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; Hurt and others, 2002).

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin and others, 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995; Tiner, 1985). Criteria for all of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.
Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils, under natural conditions, are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2006) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).
Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

Map units that are dominantly made up of hydric soils may have small areas, or inclusions, of nonhydric soils in the higher positions on the landform, and map units dominantly made up of nonhydric soils may have inclusions of hydric soils in the lower positions on the landform.
The criteria for hydric soils are represented by codes in the table (for example, 2). Definitions for the codes are as follows:

1. All Histels except for Folistels, and Histosols except for Folists.
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Pachic subgroups, or Cumulic subgroups that:
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;
3. Soils that are frequently ponded for long or very long duration during the growing season.
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;
4. Map unit components that are frequently flooded for long duration or very long duration during the growing season that:
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;

Hydric Condition: Food Security Act information regarding the ability to grow a commodity crop without removing woody vegetation or manipulating hydrology.

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. Doc. 2012-4733 Filed 2-28-12. February, 28, 2012. Hydric soils of the United States.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.
Vasilas, L.M., G.W. Hurt, and C.V. Noble, editors. Version 7.0, 2010. Field indicators of hydric soils in the United States.

Report-Hydric Soil List - All Components

Hydric Soil List - All Components-WI602-Milwaukee and Waukesha Counties, Wisconsin					
Map symbol and map unit name	Component/Local Phase	Comp. pct.	Landform	Hydric status	Hydric criteria met (code)
AsA: Ashkum silty clay loam, 0 to 2 percent slopes	Ashkum-Drained	85-100	Ground moraines,end moraines	Yes	2
	Peotone-Drained	0-9	Depressions on ground moraines	Yes	2
	Orthents, clayey	0-3	Lake plains, ground moraines	No	-
	Urban land	0-3	Ground moraines	No	-
Cw: Colwood silt loam, 0 to 2 percent slopes	Colwood	80-90	Lakebeds (relict)	Yes	2,3
	Pella	5-10	Drainageways	Yes	2,3
	Palms	5-10	Depressions	Yes	1,3
HmC2: Hochheim loam, 6 to 12 percent slopes, eroded	Hochheim-Eroded	85-92	Drumlins	No	-
	Theresa	4-8	Drumlins	No	-
	Hochheim	4-7	Drumlins	No	-
Ph: Pella silt loam, 0 to 2 percent slopes	Pella	80-91	Drainageways	Yes	2,3
	Kendall	5-9	Drainageways	No	-
	Lamartine	4-8	Drainageways	No	-
	Palms-Muck	1-3	Depressions	Yes	1,3

Hydric Soil List - All Components-WI131-Washington County, Wisconsin					
Map symbol and map unit name	Component/Local Phase	Comp. pct.	Landform	Hydric status	Hydric criteria met (code)
AtA: Ashkum silty clay loam, 0 to 2 percent slopes	Ashkum-Drained	85-100	End moraines, ground moraines	Yes	2
	Peotone-Drained	0-9	Depressions on ground moraines	Yes	2
	Orthents, clayey	0-3	Lake plains,ground moraines	No	-
	Urban land	0-3	Ground moraines	No	-
Cw: Colwood silt loam, 0 to 2 percent slopes	Colwood	80-90	Lakebeds (relict)	Yes	2,3
	Pella	5-10	Drainageways	Yes	2,3
	Palms	5-10	Depressions	Yes	1,3
HmC2: Hochheim loam, 6 to 12 percent slopes, eroded	Hochheim-Eroded	85-92	Drumlins	No	-
	Hochheim	4-7	Drumlins	No	-
	Theresa	4-8	Drumlins	No	-
MtA: Mequon silt loam, 1 to 3 percent slopes	Mequon	90	Drainageways	No	-
	Ashkum	10	Depressions	Yes	2,3
ThB2: Theresa silt loam, 2 to 6 percent slopes, eroded	Theresa-Eroded	80-90	Drumlins	No	-
	Hochheim-Eroded	9-15	Drumlins	No	-
	Lamartine	1-5	Drumlins	No	-

Hydric Soils

This table lists the map unit components that are rated as hydric soils in the survey area. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; Hurt and others, 2002).

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin and others, 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995; Tiner, 1985). Criteria for all of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.
Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils, under natural conditions, are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric
soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2006) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).
Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

Map units that are dominantly made up of hydric soils may have small areas, or inclusions, of nonhydric soils in the higher positions on the landform, and map units dominantly made up of nonhydric soils may have inclusions of hydric soils in the lower positions on the landform.
The criteria for hydric soils are represented by codes in the table (for example, 2). Definitions for the codes are as follows:

1. All Histels except for Folistels, and Histosols except for Folists.
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Pachic subgroups, or Cumulic subgroups that:
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;
3. Soils that are frequently ponded for long or very long duration during the growing season.
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;
4. Map unit components that are frequently flooded for long duration or very long duration during the growing season that:
A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
B. Show evidence that the soil meets the definition of a hydric soil;

Hydric Condition: Food Security Act information regarding the ability to grow a commodity crop without removing woody vegetation or manipulating hydrology.
References:

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.
Federal Register. September 18, 2002. Hydric soils of the United States.
Federal Register. July 13, 1994. Changes in hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.
National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

Report—Hydric Soils

Hydric Soils-Milwaukee and Waukesha Counties, Wisconsin				
Map symbol and map unit name	Component	Percent of map unit	Landform	Hydric criteria
AsA—Ashkum silty clay loam, 0 to 2 percent slopes				
	Ashkum, drained	92	Ground moraines, end moraines	2
	Peotone, drained	5	Depressions on ground moraines	2
Cw-Colwood silt loam, 0 to 2 percent slopes				
	Colwood	85	Lakebeds (relict)	2, 3
	Pella	8	Drainageways	2, 3
	Palms	7	Depressions	1, 3
Ph—Pella silt loam, 0 to 2 percent slopes				
	Pella	85	Drainageways	2, 3
	Palms, muck	2	Depressions	1, 3

Hydric Soils-Washington County, Wisconsin				
Map symbol and map unit name	Component	Percent of map unit	Landform	Hydric criteria
AtA—Ashkum silty clay loam, 0 to 2 percent slopes				
	Ashkum, drained	92	End moraines, ground moraines	2
	Peotone, drained	5	Depressions on ground moraines	2
Cw-Colwood silt loam, 0 to 2 percent slopes				
	Colwood	85	Lakebeds (relict)	2, 3
	Pella	8	Drainageways	2, 3
	Palms	7	Depressions	1,3
MtA—Mequon silt loam, 1 to 3 percent slopes				
	Ashkum	10	Depressions	2, 3

Taxonomic Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1999 and 2003). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. This table shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.
ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisols.
SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Udalfs (Ud, meaning humid, plus alfs, from Alfisols).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Hapludalfs (Hapl, meaning minimal horizonation, plus udalfs, the suborder of the Alfisols that has a udic moisture regime).
SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding
the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Hapludalfs.
FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particlesize class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-loamy, mixed, active, mesic Typic Hapludalfs.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.
References:
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.
Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. (The soils in a given survey area may have been classified according to earlier editions of this publication.)

Report-Taxonomic Classification of the Soils

[An asterisk by the soil name indicates a taxadjunct to the series]

Taxonomic Classification of the Soils-Milwaukee and Waukesha Counties, Wisconsin	
Soil name	Family or higher taxonomic classification
Ashkum	Fine, mixed, superactive, mesic Typic Endoaquolls
Colwood	Fine-loamy, mixed, active, mesic Typic Endoaquolls
Hochheim	Fine-loamy, mixed, active, mesic Typic Argiudolls
Pella	Fine-silty, mixed, superactive, mesic Typic Endoaquolls

Taxonomic Classification of the Soils-Washington County, Wisconsin	
Soil name	Family or higher taxonomic classification
Ashkum	Fine, mixed, superactive, mesic Typic Endoaquolls
Colwood	Fine-loamy, mixed, active, mesic Typic Endoaquolls
Hochheim	Fine-loamy, mixed, active, mesic Typic Argiudolls
Mequon	Fine, mixed, superactive, mesic Udollic Endoaqualfs
Theresa	Fine-loamy, mixed, superactive, mesic Typic Hapludalfs

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix F:

Precipitation Information

NRCS method - Rainfall Documentation Worksheet Hydrology Tools for Wetland Determination NRCS Engineering Field Handbook Chapter 19

Date	$9 / 16 / 2020$	Landowner/Project	WSH20-011-01
Weather Station	Hartford 2 W, WI	State	Wisconsin
County	Washington County	Growing Season	yes
Photo/obs Date	$9 / 11 / 2020$	Soil Name	Cw- Colwood silt loam

Note: If sum is	
$\mathbf{6 - 9}$	prior period has been drier than normal
$\mathbf{1 0 - 1 4}$	prior period has been normal
$\mathbf{1 5 - 1 8}$	prior period has been wetter than normal

Condition value:
Dry $=1$
Normal $=2$
Wet $=3$

WETS Station: HARTFORD 2 W, WI			
Requested years: 1981-2010			
Month	Avg Precip	30\% chance precip less than	30% chance precip more than
Jan	1.42	0.77	1.72
Feb	1.18	0.53	1.43
Mar	1.69	0.97	2.03
Apr	3.06	2.08	3.62
May	3.36	2.4	4.09
Jun	4.1	2.48	4.96
Jul	4.29	3	4.99
Aug	3.78	2.69	4.44
Sep	3.32	2.03	4.04
Oct	2.83	1.76	3.16
Nov	2.27	1.22	2.68
Dec	1.59	1	1.98

STATION	NAME	DATE	PRCP
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 13 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 14 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 15 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 16 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 17 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 18 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 19 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 20 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 21 / 2020$	1.4
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 22 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 24 / 2020$	0.05
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 25 / 2020$	0.02
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 26 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 27 / 2020$	0.3
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 28 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 29 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$6 / 30 / 2020$	0.19
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 1 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 2 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 3 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 4 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 5 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 6 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 7 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 8 / 2020$	0.75
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 9 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 10 / 2020$	1.7
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 11 / 2020$	0.01
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 12 / 2020$	0.12
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 13 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 14 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 15 / 2020$	0.25
US1WIWS0031	HARTFORD 2.9 ENE, WI US	$7 / 16 / 2020$	0
US1WIWS0032	HARTFORD 2.9 ENE, WI US	$7 / 17 / 2020$	0
US1WIWS0033	HARTFORD 2.9 ENE, WI US	$7 / 18 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 19 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 20 / 2020$	0

US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 21 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI U	$7 / 22 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 23 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 24 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 25 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 26 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 27 / 2020$	0.4
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 28 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 29 / 2020$	0.01
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 30 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$7 / 31 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 1 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 2 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 3 / 2020$	0.8
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 4 / 2020$	0.01
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 5 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 6 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 7 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 8 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 9 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 10 / 2020$	0.37
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 11 / 2020$	0.22
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 12 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 13 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 14 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 15 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 16 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 17 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 18 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 19 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 20 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 21 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 22 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 23 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 24 / 2020$	0
US1WIWS0030	HARTFORD 2.9 ENE, WI US	$8 / 25 / 2020$	1.03

| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $8 / 26 / 2020$ | 0.63 |
| :--- | :--- | ---: | ---: | ---: |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $8 / 27 / 2020$ | 0 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $8 / 28 / 2020$ | 0.55 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $8 / 29 / 2020$ | 0.8 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $8 / 30 / 2020$ | 0 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $8 / 31 / 2020$ | 0 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 1 / 2020$ | 0.09 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 2 / 2020$ | 0.12 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 3 / 2020$ | 0 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 4 / 2020$ | 0 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 5 / 2020$ | 0 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 6 / 2020$ | 0.07 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 7 / 2020$ | 0 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 8 / 2020$ | 0.11 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 9 / 2020$ | 0.57 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 10 / 2020$ | 0.32 |
| US1WIWS0030 | HARTFORD 2.9 ENE, WI US | $9 / 11 / 2020$ | 0.24 |

Appendix G:

Wetland Determination Data Forms
Project/ Site: WSH20-011-01 County Line Road

City/ County: Germantown/ Washington County Sampling Date: 11-Sep-20

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present Hydric Soil Present? Wetland Hydrology Present?	Yes \bullet No \odot Yes \bigcirc Yes \bullet No	Is the Sampled Area within a Wetland?
Remarks: (Explain alternative procedures here or in a separate report.) This area is a terrace to a stream. Approximately 3 to 4 feet lower than the adjacent upland and 1.5 ft higher than current water level of adjacent stream.		

Hydrology

VEGETATI ON - Use scientific names of plants

Remarks: (I nclude photo numbers here or on a separate sheet.)

Remarks:
Project/ Site: WSH20-011-01 County Line Road

City/ County: Germantown/ Washington County Sampling Date: 11-Sep-20

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrology

VEGETATI ON - Use scientific names of plants

Remarks: (I nclude photo numbers here or on a separate sheet.)

Remarks:

This area was most likely filled.

WETLAND DETERMI NATI ON DATA FORM - Northcentral and Northeast Region

Project/ Site: WSH20-011-01 County Line Road

City/ County: Germantown/ Washington County Sampling Date: 11-Sep-20

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present Hydric Soil Present? Wetland Hydrology Present?	Yes \bullet No Yes \bullet No \bigcirc Yes \bullet No	Yes \odot No \bigcirc
Remarks: (Explain alternative procedures here or in a separate report.) This area is a terrace to an adjacent stream. Approx two feet higher than the adjacent stream.		

Hydrology

VEGETATI ON - Use scientific names of plants

Remarks: (I nclude photo numbers here or on a separate sheet.)

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks:

WETLAND DETERMI NATI ON DATA FORM - Northcentral and Northeast Region

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrology

VEGETATI ON - Use scientific names of plants

Tree Stratum (Plot size: 30 ft radius)	Absolute \% Cover	Dominant Species?	Indicator Status
1. Acer negundo	30	\checkmark	FAC
2.	0	\square	
3.	0	\square	
4.	0	\square	
5.	0	\square	
6.	0	\square	
7.	0	\square	
Sapling/ Shrub Stratum (Plot size: 15 ft radius _)	30	= Total Cover	
1. Rhamnus cathartica	25	\checkmark	FAC
2.	0	\square	
3.	0	\square	
4.	0	\square	
5.	0	\square	
6.	0	\square	
7.	0	\square	
Herb Stratum (Plot size: 5 ft radius)	25	= Total Cover	
1. Rhamnus cathartica	5	\checkmark	FAC
2. Glechoma hederacea	10	\checkmark	FACU
3.	0	\square	
4.	0	\square	
5.	0	\square	
6.	0	\square	
7.	0	\square	
8.	0	\square	
9.	0	\square	
10.	0	\square	
11.	0	\square	
12.	0	\square	
Woody Vine Stratum (Plot size: 30 ft radius)	15	$=$ Total Cover	
1.	0	\square	
2.	0	\square	
3.	0	\square	
4.	0	\square	
	0	$=$ Total Cover	

Sampling Point: T2B

Dominance Test worksheet:				
Number of Dominant Species				
That are OBL, FACW, or FAC:			3	(A)
Total Number of Dominant				
Species Across All Strata:			4	(B)
Percent of dominant Species				
Prevalence I ndex worksheet:				
Total \% Cover of: Multiply by:				
OBL species	$0 \quad x$	$\times 1$	0	
FACW species	$0 \quad x$	$\times 2$	0	
FAC species	$60 \times$	$\times 3$	180	
FACU species	10 x	$\times 4$	40	
UPL species	$0 \quad x$	$\times 5$	0	
Column Totals:	70 ((A)	220	(B)
Prevalence Index $=B / A=$			43	
Hydrophytic Vegetation I ndicators:				
\square Rapid Test for Hydrophytic Vegetation				
\checkmark Dominance Test is > 50\%				
\square Prevalence Index is $\leq 3.0{ }^{1}$				
Morphological Adaptations ${ }^{1}$ (Provide supporting data in Remarks or on a separate sheet)				
\square Problematic Hydrophytic Vegetation ${ }^{1}$ (Explain)				
${ }^{1}$ I ndicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.				

Definitions of Vegetation Strata:

Tree - Woody plants, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.

Sapling/shrub - Woody plants less than 3 in. DBH and greater than $3.28 \mathrm{ft}(1 \mathrm{~m})$ tall.

Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.

Woody vine - All woody vines greater than 3.28 ft in height.

Hydrophytic

Vegetation
Present? Yes $\odot \quad$ No \bigcirc

Remarks: (I nclude photo numbers here or on a separate sheet.)
This area is almost completely shaded out by Rhamnus cathartica.

Remarks:

Refusal met at four inches due to large rocks. This area has been filled with large rocks, brick, and concrete. Tried to dig a pit in several locations. Piles of gravel and rock are visible throughout this area. Trees growing on fill likely placed 40+ years ago.

STORM WATER, EROSION CONTROL, \& WETLAND SETBACK MITIGATION NARRATIVE FOR: NEW TACO BELL-SUNDANCE, INC VILLAGE OF GERMANTOWN, WI

October 5, 2020
REVISED: February 22, 2021

Prepared By:

Jason Daye, P.E.
Excel Engineering Inc.
100 Camelot Drive
Fond du Lac, WI 54935
920-926-9800

Table of Contents

Project Overview
Post Construction Stormwater Management Summary
Wetland Setback Mitigation Plan
Pipe Capacity
Erosion Control
Appendix A: Existing and Proposed Site Conditions
Appendix B: Post Construction Operation \& Maintenance
Appendix C: Pipe Capacity Calculations
Appendix D: Wetland Setback Mitigation Exhibit
Appendix E: Soil Maps

Project Overview

The proposed new Taco Bell development is located at N96W18058 County Line Road in the Village of Germantown, Wisconsin. The total site acreage is 4.91 acres, however, the proposed project will take place only on a small portion of the site that fronts County Line Road. The existing site currently consists of an existing multi-tenant building along with associated asphalt parking. The proposed project involves complete demolition/removal of the existing building and asphalt pavement onsite for construction of a new 1,786 square foot Taco Bell restaurant and associated site improvements. The site improvements will include 22 new paved parking stalls, a new concrete drive thru lane, internal sidewalk networks, and a waste enclosure. Reference Appendix A for a representation of the of the existing and proposed site conditions. The project will result in approximately 0.83 acres of site disturbance.

Currently, the existing development site sheet drains east/northeast towards the Menomonee River which bisects the property. The proposed site development will match the existing drainage patterns by draining toward the Menomonee River via sheet drainage and storm sewer. This site will not be subject to post construction stormwater management requirements as explained in the below section of this report. However, BMPs will be implemented to address the wetland setback mitigation requirements as described in later sections of this report.

Post Construction Stormwater Management Summary:

Wisconsin DNR: The proposed site development will result in 0.83 acres of site disturbance and is therefore exempt from meeting the requirements of NR 151.12. In addition, the site is considered a redevelopment site and total impervious land cover will be reduced following completion of the project.

Village of Germantown/MMSD: The proposed site development is exempt from meeting the requirements of MMSD Chapter 13 due to the site reducing overall impervious land cover and disturbing less than 2 acres of land during construction/redevelopment. The proposed development site will reduce total impervious land cover by 3,034 square feet and will result in 0.83 acres of site disturbance.

As described above, the proposed site development will not be subject to post-construction stormwater management requirements. However, BMPs will be implemented to the maximum extent practical to improve the quality of the stormwater runoff prior to it entering the Menomonee River. The curb inlet structures onsite will be equipped with two-foot sumps below the outlet elevations to help settle solids out of the stormwater prior to discharge. In addition, a vegetated filter strip will be provided down gradient of the development such that pollutants can be filtered out of the stormwater prior to entering the Menomonee River.

Wetland Setback/Navigable Waterway Setback Mitigation Plan:

Per Village of Germantown requirements, no development is allowed within 75' of the OHWM of any navigable waterway or within 25^{\prime} of a delineated wetland area without an approved mitigation plan that compensates for disturbance within these setbacks at a 1:1 ratio. The
majority of the existing site currently lies within the 75^{\prime} OHWM setback and in close proximity to the 25 ' wetland setback. The proposed development will be primarily within the footprint of the existing development on site. A total of $13,400 \mathrm{sf}$ of disturbance is required within these setback areas. Therefore, a minimum mitigation area of $13,400 \mathrm{sf}$ is required to meet the requirements set forth by the Village of Germantown.

One mitigation technique will involve construction of a vegetated filter strip down-gradient from the development to filter pollutants out of the stormwater runoff prior to it entering the wetland areas and the Menomonee River. The vegetated filter strip will consist of a seed mixture that favors a wet mesic soil site and will be constructed in accordance with the NRCS conservation practice standard for critical area plantings (code 342).

A second mitigation technique will involve invasive species management in the form of Common Buckthorn removal from the wooded area located north of the proposed development. Specific requirements for this Common Buckthorn management will be provided in the plan specifications listed on sheet C 0.2 of the construction plan set. This will allow for native grasses and forest species to regenerate in the area and provide better biodiversity for the wetland areas adjacent to the Menomonee River.

In addition to the two mitigation techniques mentioned above, the development will be reducing total impervious coverage on the subject property by about $3,034 \mathrm{sf}$. Therefore, this will help to reduce total stormwater runoff for the subject property. As a result, soil erosion will be reduced and therefore the wetland areas down-gradient from the site will be improved. Lastly, 2' sumps will be provided in all onsite storm structures to help settle out particulates before the stormwater leaves the site.

In total, approximately $18,084 \mathrm{sf}$ of mitigation area is proposed when considering the vegetated filter strip area, Common Buckthorn management area, and overall reduction of impervious area on site. This results in a disturbance to mitigation ratio of $1: 1.35$, therefore exceeding the $1: 1$ requirements set forth by the Village of Germantown. Reference Appendix D for a representation of the proposed mitigation plan.

Pipe Capacity:

All onsite storm sewer has been designed to safely convey the 100- year storm event based on TR- 55 methods. Proposed storm sewer capacity was verified by utilizing a Manning's equation calculation spreadsheet for full flowing pipes. In addition, overland flow routes are provided onsite for any event exceeding the 100-year event such that the maximum possible ponding on site is 7 inches. Reference Appendix C for supporting calculations.

Erosion Control:

The proposed site erosion control plan was designed to meet the requirements of NR151.105 (construction site performance standard for non-permitted sites). The erosion control specifications, construction sequence, site stabilization notes, seeding notes, and dewatering
notes are all listed on sheets C 0.1 and C 0.2 of the construction plan set. Additional notes and locations of erosion control BMPs can be found on C1.2 of the construction plan set.

Appendix A Existing and Proposed Site Conditions:

EXISTING SITE MAP

PROPOSED SITE MAP
NORTH

Appendix B Post Construction Operation \& Maintenance:

POST CONSTRUCTION OPERATION AND MAINTENANCE PLAN

The owner of the property affected shall inspect and maintain the following stormwater management systems frequently, especially after heavy rainfalls, but at least on an annual basis unless otherwise specified.

STORMWATER FACILITY	TYPE OF ACTION
1. Lawn and Landscaped Areas	All lawn areas shall be kept clear of any materials that block the flow of stormwater. Rills and small gullies shall immediately be filled and seeded or have sod placed in them. The lawn shall be kept mowed, tree seedlings shall be removed, and litter shall be removed from landscaped areas.
2. Catch Basin Grates/Curb Inlet Grates/Pipe Endwalls	The openings to these structures must be kept clear of debris and any other items causing potential blockage of stormwater.
3. Catch Basin/Curb Inlet Sumps	Sumps shall visually be inspected every 3 months. Siltation shall be removed and disposed of offsite when the sump depth is within 3" of the outlet pipe invert elevation. The removal of siltation should occur a minimum of once per year.
4. Vegetated Filter Strip	Signs of erosion shall be repaired, reinforced, and revegetated immediately to the original plan requirements. Weed control during initial vegetation establishment is critical to ensure proper growth. Mowing or herbicide application may be used to control weeds before they go to seed. Once the permanent vegetation is established, control noxious and brushy weeds from encroaching into the vegetated areas by mowing at least once per year. Visually inspect the vegetated filter strip on a regular basis and repair any erosion and control weeded areas as needed.
5. Record of	The operation and maintenance plan shall remain onsite and be available for inspection when requested by WDNR or Village of Germantown. When requested, the owner shall make available for inspection all maintenance records to the department or agent for the life of the system.
Maintenance	

Appendix C Pipe Capacity Calculations:

STORM SEWER BASIN MAP
NORTH

Hydrograph Return Period Recap

ydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hydrograph Summary Report

draflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 1

PIPE BASIN A

Hydrograph type	= SCS Runoff	Peak discharge	$=0.784 \mathrm{cfs}$
Storm frequency	= 10 yrs	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	= 1,549 cuft
Drainage area	$=0.160 \mathrm{ac}$	Curve number	= 91*
Basin Slope	= 0.0 \%	Hydraulic length	$=0 \mathrm{ft}$
Tc method	= User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=3.82$ in	Distribution	= Custom
Storm duration	= F:IStandards		istriteation\MS

* Composite $($ Area/CN $)=[(0.120 \times 98)+(0.045 \times 74)] / 0.160$

Hyd. No. 2

PIPE BASIN B

Hydrograph type	= SCS Runoff	Peak discharge	$=0.468 \mathrm{cfs}$
Storm frequency	= 10 yrs	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	= 892 cuft
Drainage area	$=0.110 \mathrm{ac}$	Curve number	$=86{ }^{*}$
Basin Slope	= 0.0 \%	Hydraulic length	$=0 \mathrm{ft}$
Tc method	= User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	= 3.82 in	Distribution	= Custom
Storm duration	= F:IStandards		Distritidion\M

${ }^{*}$ Composite $($ Area $/ C N)=[(0.055 \times 98)+(0.059 \times 74)] / 0.110$

Hyd. No. 3

PIPE BASIN C

Hydrograph type	= SCS Runoff	Peak discharge	$=0.227 \mathrm{cfs}$
Storm frequency	= 10 yrs	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	= 500 cuft
Drainage area	$=0.041 \mathrm{ac}$	Curve number	= 98
Basin Slope	= 0.0 \%	Hydraulic length	$=0 \mathrm{ft}$
Tc method	= User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	= 3.82 in	Distribution	= Custom
Storm duration	= F:IStandards		Distritedition\}

Hyd. No. 4

PIPE BASIN D

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.408 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=2,975 \mathrm{cuft}$
Drainage area	$=0.260 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=3.82$ in	Distribution	$=$ Custom
Storm duration	$=$ F: 1 Standards $\backslash 400$ CivillStormw		

${ }^{*}$ Composite $($ Area $/ C N)=[(0.241 \times 98)+(0.019 \times 74)] / 0.260$

Hydrograph Summary Report

Hyd. No. 1

PIPE BASIN A

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.417 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=2,918 \mathrm{cuft}$
Drainage area	$=0.160 \mathrm{ac}$	Curve number	$=91^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=6.41$ in	Distribution	$=$ Custom
Storm duration	$=$ F: \backslash Standards $\backslash 400$ CivillStormw		

* Composite $($ Area/CN $)=[(0.120 \times 98)+(0.045 \times 74)] / 0.160$

Hyd. No. 2

PIPE BASIN B

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.908 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,797 \mathrm{cuft}$
Drainage area	$=0.110 \mathrm{ac}$	Curve number	$=86^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=6.41$ in	Distribution	$=$ Custom
Storm duration	$=$ F:Standards $\backslash 400$ CivillStormw		

* Composite (Area/CN) $=[(0.055 \times 98)+(0.059 \times 74)] / 0.110$

Hydrograph Report

Hyd. No. 3

PIPE BASIN C

Hydrograph type	= SCS Runoff	Peak discharge	$=0.383 \mathrm{cfs}$
Storm frequency	= 100 yrs	Time to peak	$=726 \mathrm{~min}$
Time interval	= 2 min	Hyd. volume	= 861 cuft
Drainage area	$=0.041 \mathrm{ac}$	Curve number	= 98
Basin Slope	= 0.0 \%	Hydraulic length	$=0 \mathrm{ft}$
Tc method	= User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=6.41$ in	Distribution	= Custom
Storm duration	F:IStandards	むたempeefaptates\MS	DistritidionlM

PIPE BASIN C

Hyd. No. 4

PIPE BASIN D

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=2.408 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=5,252 \mathrm{cuft}$
Drainage area	$=0.260 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=6.41$ in	Distribution	$=$ Custom
Storm duration	$=$ F: 1 Standards $\backslash 400$ CivillStormw		

* Composite (Area/CN) $=[(0.241 \times 98)+(0.019 \times 74)] / 0.260$

Return Period (Yrs)	Intensity-Duration-Frequency Equation Coefficients (FHA)			
	B	D	E	(N/A)
1	0.0000	0.0000	0.0000	--
2	0.0000	0.0000	0.0000	-------
3	0.0000	0.0000	0.0000	--------
5	0.0000	0.0000	0.0000	------
10	0.0000	0.0000	0.0000	--------
25	0.0000	0.0000	0.0000	---
50	0.0000	0.0000	0.0000	-----
100	292.6913	22.1000	1.0035	---

File name: IL SECT. 1 RAINFALL_100 YR.IDF

Intensity = B / (Tc + D)^E

Return Period (Yrs)	Intensity Values (in/hr)											
	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	10.68	9.01	7.79	6.86	6.13	5.54	5.05	4.65	4.30	4.00	3.74	3.51

Tc = time in minutes. Values may exceed 60.
Precip. file name: Sample.pcp

Storm Distribution	Rainfall Precipitation Table (in)							
	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	3.82	0.00	0.00	6.41

Pipe Data				Pipe Capacity (100-yr)				
Pipe ID	Diameter (FT)	Slope (FT/FT)	Manning's n	Basin ID	Total Flow (cfs)	Total Flow (gpm)	Full Flow Capacity (cfs)	Full Flow Capacity (gpm)
A	1	0.0050	0.012	A,B,C	2.71	1215	2.74	1228
B	0.667	0.0100	0.012	B,C	1.29	579	1.31	590
C	0.5	0.0275	0.012	C	0.38	172	1.01	454
D	1	0.0200	0.012	D	2.41	1082	5.47	2456

Full Flow Capacity based off Manning's Equation		$\mathrm{Q}=\frac{1.49}{n} R^{2 / 3} S^{1 / 2} \mathrm{a}$	Typical Manning's n	
Where:				
	Q = Full Flow Capacity of Pipe (cfs)		HDPE	0.012
	$\mathrm{n}=$ manning's roughness coefficient		PVC	0.012
	$\mathrm{R}=$ hydraulic radius (ft) ($\mathrm{D} / 4$)		Concrete	0.013
	$\mathrm{s}=$ hydraulic gradient, slope (ft/ft)		CMP	0.024

*Total Flow calculated via TR-55 hydrologic calculations. Reference Storm Pipe Basin Map \& TR-55 Calculations

Appendix D Wetland Setback Mitigation Exhibit:

Appendix E Soil Maps:

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Washington County, Wisconsin
Survey Area Data: Version 20, Jun 8, 2020
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 1, 2019—Oct 12, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AtA	Ashkum silty clay loam, 0 to 2 percent slopes	C/D	0.0	3.4%
Cw	Colwood silt loam, 0 to 2 percent slopes	C/D	0.9	96.5%
MtA	Mequon silt loam, 1 to 3 percent slopes	C/D	0.0	0.2%
Totals for Area of Interest	$\mathbf{0 . 9}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

TACO BELL DEVELOPMENT
 VILLAGE OF GERMANTOWN, WASHINGTON COUNTY, WISCONSIN

DATE SUBMITTED: December 22, 2020

PREPARED FOR:

Excel Engineering
100 Camelot Drive
Fond du Lac, WI 54935
Phone: (920) 926-9800
Contact Person: Jason Daye, P.E.

PREPARED BY:

TADI
P.O. Box 128

Cedarburg, WI 53012
Phone: (800) 605-3091
Contact Person: Michael May, P.E., PTOE
(WisDOT TIA Certification \# SE05-804-030)
"I certify that this Traffic Impact Analysis has been prepared by me or under my immediate supervision and that I have experience and training in the field of traffic and transportation engineering."

Wisconsin Registration \#37622-006
TADI

Taco Bell Development Traffic Impact Analysis

 Table of ContentsLIST OF EXHIBITS ii
LIST OF APPENDICES iii
CHAPTER I - INTRODUCTION \& EXECUTIVE SUMMARY 1
Part A - Purpose of Report and Study Objectives 1
Part B - Executive Summary 1
CHAPTER II - PROPOSED DEVELOPMENT 3
Part A - On-Site Development 3
Part B - Study Area 3
Part C - Off-Site Development 3
Part D - Site Accessibility 3
CHAPTER III - ANALYSIS OF EXISTING CONDITIONS 5
Part A - Physical Characteristics 5
Part B - Traffic Volumes 5
Part C - Capacity Level of Service 5
CHAPTER IV - FORECASTED TRAFFIC 7
Part A - Site Traffic Forecasting 7
Part B - Build Traffic 8
CHAPTER V - TRAFFIC AND MODIFICATION ANALYSIS 9
Part A - Site Access 9
Part B - Capacity Level of Service Analysis. 9
Part C - Queueing Analysis 9
Part D - Speed Considerations/Sight Distance 9
Part E - Crash Summary 10
CHAPTER VI - RECOMMENDATIONS AND CONCLUSION 12
Part A - Recommended Modifications 12
Part B - Conclusion 12

LIST OF EXHIBITS

Exhibit 1-1Site Location Map
Exhibit 1-2Conceptual Site Plan
Exhibit 1-3Recommended Modifications

Exhibit 2-1Site Location Map
Exhibit 2-2Conceptual Site Plan

Exhibit 3-1Existing Transportation Detail
Exhibit 3-2a.......Year 2020 Existing Traffic Volumes - Unadjusted
Exhibit 3-2bYear 2020 Existing Traffic Volumes - Adjusted
Exhibit 3-3Year 2020 Existing Traffic Operations \& Queues

Exhibit 4-1Trip Generation \& Distribution Tables
Exhibit 4-2a.......Taco Bell New Trips
Exhibit 4-2bTaco Bell Pass-By Trips
Exhibit 4-2c.......Taco Bell Driveway Trips
Exhibit 4-3Removal of Existing Site Trips
Exhibit 4-4Year 2021 Build Traffic Volumes

Exhibit 5-1Year 2021 Build Traffic Operations (Taco Bell)
Exhibit 5-2a.......County Line Road \& Shady Lane ISD Photos - P-Vehicle Facing East from SB Approach

Exhibit 5-2bCounty Line Road \& Shady Lane ISD Photos - SU-Vehicle Facing East from SB Approach
Exhibit 5-2c.......County Line Road \& Shady Lane SSD Photos -Facing West from WB Approach

Exhibit 5-3Intersection Collision Diagram

LIST OF APPENDICES

Appendix A.......Traffic
Existing Turning Movement Traffic Counts
WisDOT AADT Hourly Traffic Counts
ISD Calculations
Appendix BYear 2020 Existing Traffic - Peak Hour Analysis Outputs
Appendix CYear 2021 Build Traffic, With Taco Bell - Peak Hour Analysis Outputs

CHAPTER I - INTRODUCTION \& EXECUTIVE SUMMARY

PART A - PURPOSE OF REPORT AND STUDY OBJECTIVES

The Taco Bell Development is proposed to be located northwest of the County Line Road \& Shady Lane intersection in the Village of Germantown, Washington County, Wisconsin.

This traffic impact analysis ("TIA") was being prepared by TADI to understand the site and transportation impacts of the proposed development. This report documents the procedures, findings, and conclusions of the analysis. The analysis identifies recommended modifications based on existing roadway conditions, existing traffic volumes, and additional traffic expected to be generated by the Taco Bell Development.

PART B - EXECUTIVE SUMMARY

The executive summary includes a description of the study area, description of the development and conclusions based on the findings of the TIA.

B1. Study Area

The Taco Bell Development is proposed to be located northwest of County Line Road \& Shady Lane as shown in Exhibit 1-1. A conceptual site plan is shown in Exhibit 1-2. The proposed development will replace an existing shopping center. County Line Road is located along the south border of the development, the Menomonee River is located along the northeast border of the development, and Mills Fleet Farm is located along the west border of the development.

The study area includes the County Line Road intersection with Shady Lane, which operates with stop control on the Shady Lane northbound and Development Driveway southbound approaches.

B2. On-Site Development Description

The Taco Bell Development is a proposed to be a 1,786 square foot (sf) fast-food restaurant with drive-through. For the purpose of this TIA, the Taco Bell Development was assumed to be fully constructed and operational in Year 2021.

B3. Off-Site Development Description

No off-site development plans were identified within the study area.

B4. Site Generated Traffic

To address potential future traffic impacts at the study area intersections, it is necessary to identify the hourly volume of traffic generated by proposed development. Traffic volumes expected to be generated are based on the size and type of the proposed uses and on trip rates as published in the ITE Trip Generation Manual, Tenth Edition.

The Taco Bell Development is expected to generate 840 total driveway trips ($420 \mathrm{in} / 420$ out) during a typical weekday, 90 total driveway trips ($45 \mathrm{in} / 45$ out) during the weekday midday peak hour, 60 total driveway trips ($30 \mathrm{in} / 30$ out) during the weekday evening peak hour, and 100 total driveway trips ($50 \mathrm{in} / 50$ out) during the Saturday midday. Note that approximately 50% of these driveway trips are expected to be pass-by trips, or trips that occur when vehicles already on County Line Road stop at the Taco Bell before continuing on their intended route (e.g., an eastbound motorist on County Line Road today stops at Taco Bell then continues eastbound on County Line Road). The remaining 50% of trips are expected to be new trips to the study intersection.

B5. Proposed Access

The existing Development Driveway, located opposite Shady Lane, will service the Taco Bell Development.
Cross-access to Fleet Farm, located immediately west of the development site, is not possible due to the location of a structure on the Fleet Farm site that extends from County Line Road to the main Fleet Farm building.

B6. Recommended Modifications

Recommended modifications are for jurisdictional consideration and are not legally binding. Washington County and the Village of Germantown reserve the right to determine alternative solutions.
The Menomonee River passes under County Line Road immediately east of Shady Lane/Development Driveway. A fence exists along the north edge of the bridge and, along with vegetation, blocks the line of sight for passenger vehicle motorists wishing to turn or cross from the Development Driveway onto County Line Road. The following modifications, shown in Exhibit 1-3, are recommended to improve lines of sight.

- Remove vegetation growing within the bridge's fence west of the Menomonee River centerline and correct the west end of the fence such that the westernmost point is adjusted north.
- The curb of the north side of County Line Road currently shifts approximately 5- to 6feet north on the approach and departure sides of the Development Driveway. Shift the curb line at the driveway south to track County Line Road such that the auxiliary lane width in front of the driveway is consistent with the auxiliary lane width east of the intersection. This modification will allow motorists to safety position themselves approximately 5 - to 6 -feet closer to the roadway and, by doing so, improve lines of sight past the bridge fence to see oncoming westbound traffic on County Line Road.
- The median-side stop sign on the Shady Lane approach to County Line Road is located on the wrong side of the crosswalk. Relocate the stop sign to the south side of the crosswalk (i.e. stop before the crosswalk).
The results of the analysis show that, with the latest traffic signal timings in place along County Line Road to the east and west of Shady Lane/Development Driveway, gaps in the eastbound and westbound traffic streams are expected to be sufficient to accommodate LOS D or better operations for all movements at County Line Road \& Shady Lane/Development Driveway intersection with Taco Bell.

B7. Conclusion

All movements to/from the Taco Bell Development are expected to operate safely and efficiently with the assumptions outlined in this TIA and the identified recommended modifications if properly designed and implemented.

Germantown, Wisconsin

Copyright © and (P) 1988-2012 Microsoft Corporation and/or itsuppliers. All rights reserved. http://www.microsoft.com/strees/
Certain mapping and direction data © 2012 NAVTEQ. All rights served. The Data for areas of Canada includes information takerwith permission from Canadian authorities, including: © Her Mimsty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQnd NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2012 Tele AttaNorth America, Inc. All rights reserved. Tele Atlas and Teletlas North America are trademarks of Tele Atlas, Inc. © 2012 yApplied Geographic Solutions. All rghts reserved. Portions © Copright 2012 by Woodall Publications Corp. All ghts reserved.

 $11 \exists 9$ OJVL- 3 ONVANNS

CHAPTER II - PROPOSED DEVELOPMENT

PART A - ON-SITE DEVELOPMENT

A1. Development Description and Site Location

The Taco Bell Development is proposed to be located northwest of County Line Road \& Shady Lane as shown in Exhibit 1-1. A conceptual site plan is shown in Exhibit 1-2. The proposed development will replace an existing shopping center. County Line Road is located along the south border of the development, the Menomonee River is located along the northeast border of the development, and Mills Fleet Farm is located along the west border of the development.

A2. Land Use and Intensity

The Village of Germantown identifies the proposed development site for commercial development. The Taco Bell Development is a proposed to be a 1,786 square foot (sf) fast-food restaurant with drive-through.

A3. Site Plan

The existing Development Driveway, located opposite Shady Lane, will service the Taco Bell Development.
Cross-access to Fleet Farm, located immediately west of the development site, is not possible due to the location of a structure on the Fleet Farm site that extends from County Line Road to the main Fleet Farm building.

A4. Development Phasing and Timing

For the purpose of this TIA, the Taco Bell Development was assumed to be fully constructed and operational in Year 2021.

PART B - STUDY AREA

B1. Influence Area

The primary influence area for this traffic study includes the Village of Germantown and Village of Menomonee Falls. IH 41, located east of the site, is also expected to influence travel to/from the Taco Bell Development.

B2. Area of Significant Traffic Impact

The study area includes the County Line Road intersection with Shady Lane, which operates with stop control on the Shady Lane northbound and Development Driveway southbound approaches.

PART C - OFF-SITE DEVELOPMENT

No off-site development plans were identified within the study area.

PART D - SITE ACCESSIBILITY

D1. Study Area Roadways

County Line Road, also designated as CTH Q, is a four-lane divided east/west arterial highway with a posted speed limit of 35 mph within the study area. According to WisDOT, the annual average daily traffic (AADT) volumes on County Line Road were approximately 22,200 vehicles per day (vpd) east of Appleton Avenue/STH 175 (Year 2018) and 31,800 vpd east of Rivercrest Drive (Year 2019).

Shady Lane is a four-lane undivided east/west local road with a posted speed limit of 25 mph . The roadway curves north to intersect County Lane Road from the south. To the east, Shady Lane intersects Rivercrest Drive from the west. No AADT volume was recorded.

D2. Pedestrian \& Bicycle Accommodations

Sidewalk exists along both sides of County Line Road within the study area. The sidewalk on the south side terminates approximately 420 -feet east of Shady Lane.

No other pedestrian or bicycle accommodates were identified.

D3. Transit Accommodations

Regularly-scheduled transit does not operate within the study area.

Germantown, Wisconsin

Copyright © and (P) 1988-2012 Microsoft Corporation and/or itsuppliers. All rights reserved. http://www.microsoft.com/strees/
Certain mapping and direction data © 2012 NAVTEQ. All rights served. The Data for areas of Canada includes information takerwith permission from Canadian authorities, including: © Her Mimsty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQnd NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2012 Tele AttaNorth America, Inc. All rights reserved. Tele Atlas and Teletlas North America are trademarks of Tele Atlas, Inc. © 2012 yApplied Geographic Solutions. All rghts reserved. Portions © Copright 2012 by Woodall Publications Corp. All ghts reserved.

 17ヨ9 OJVI- ヨכNVaNns

CHAPTER III - ANALYSIS OF EXISTING CONDITIONS

PART A - PHYSICAL CHARACTERISTICS

A transportation detail illustrating existing intersection lane configurations, speed limits, and approximate intersection spacing is shown in Exhibit 3-1.

PART B - TRAFFIC VOLUMES

Turning movement traffic counts were collected by TADI in early-December of 2020. The following table outlines the dates of the traffic counts.

Turning Movement Count Dates

Intersection	Weekday	Saturday
County Line Road \& Shady Lane	Wed 12-2-2020	Sat 12-5-2020

The weekday midday, weekday evening, and Saturday midday peak hours were identified as $12: 00$ to $1: 00 \mathrm{pm}, 4: 30$ to $5: 30 \mathrm{pm}$, and $12: 00$ to $1: 00 \mathrm{pm}$, respectively. The traffic counts used to determine peak hour factors and truck percentages have been included in the Appendix A. The Year 2020 unadjusted existing traffic volumes are shown in Exhibit 3-2a.

The Year 2020 counts were collected during COVID-19 pandemic. The following steps were made to adjust existing traffic volumes to reflect non-COVID conditions.

- WisDOT AADT hourly volumes were collected on County Line Road between Appleton Avenue and the Fleet Farm/Bank Driveways in June of 2018. Additionally, weekday midday and weekday evening peak hour volumes for County Line Road \& Fleet Farm/Bank Driveways were identified in a TIA prepared in the area in Year 2014. TADI used the WisDOT counts, added and subtracted turn movements to/from the Fleet Farm/Bank Driveways, and used the result to estimate the volume of weekday midday and weekday evening peak hour traffic on County Line Road west of Shady Lane.
- The estimated volume of weekday midday and weekday evening peak hour traffic on County Line Road, west of Shady Lane, was used to adjust the eastbound through, eastbound right-turn, northbound left-turn, and westbound through volumes at County Line Road \& Shady Lane.
- The adjustments to weekday turning movement volumes identified in the previous step show that weekday volumes increased by approximately 10%. All remaining weekday movements at the intersection, except for movements to/from the Development Driveway, were increased by 10%.
- The Saturday turning movement volumes were collected during the holiday shopping season. As a result, the effects of the pandemic on travel patterns are not expected to be as severe as they would be for the weekday counts. Therefore, the Saturday midday volumes were increased by 8% rather than 10% like the weekday volumes. This assumed increase is robust but was used to ensure the sufficiency of intersection operations.
The resulting Year 2020 adjusted existing traffic volumes are shown in Exhibit 3-2b.

PART C - CAPACITY LEVEL OF SERVICE

C1. Level of Service Definitions

The study area intersections were analyzed based on the procedures set forth in the Highway Capacity Manual, $6^{\text {th }}$ Edition (HCM). Intersection operation is defined by "Level of Service". Level of Service (LOS) is a quantitative measure that refers to the overall quality of flow at an
intersection ranging from very good, represented by LOS 'A', to very poor, represented by LOS ' F '. For the purpose of this study, and as is standard for use in the WisDOT Southeast Region, LOS D or better was used to define desirable peak hour operating conditions. Descriptions of the various levels of service are as follows:

LOS A is the highest level of service that can be achieved. Under this condition, intersection approaches appear quite open, turning movements are easily made, and nearly all drivers find freedom of operation. At unsignalized intersections, average delays are less than 10 seconds.

LOS B represents stable operation. At unsignalized intersections, average delays are 10 to 15 seconds.

LOS C still represents stable operation, but periodic backups of a few vehicles may develop behind turning vehicles. Most drivers begin to feel restricted, but not objectionably so. At unsignalized intersections, average delays are 15 to 25 seconds.

LOS D represents increasing traffic restrictions as the intersection approaches instability. Delays to approaching vehicles may be substantial during short peaks within the peak period, but periodic clearance of long lines occurs, thus preventing excessive backups. At unsignalized intersections, average delays are 25 to 35 seconds.

LOS E represents the capacity of the intersection. At unsignalized intersections, average delays are 35 to 50 seconds.
LOS F represents jammed conditions where the intersection is over capacity and acceptable gaps for unsignalized intersections in the mainline traffic flow are minimal.

The analysis was performed using the Synchro traffic analysis software (version 11.0.168.0) in accordance with WisDOT modeling procedures.

C2. Year 2020 Existing Traffic Operations - "No Modifications"

At the request of Washington County, the traffic analysis model was prepared to include traffic signal timings to the west (Fleet Farm/Bank Driveways) and to the east (BW3 Driveway). The purpose of including the signal timings was to reflect how the platooning of traffic eastbound/westbound on County Line Road impacts gaps in the eastbound and westbound traffic streams and, thus, operations at County Line Road. The timings used in the analysis were in prepared by WisDOT in draft form and provided by the Village of Germantown.
Exhibit 3-3 shows the Year 2020 existing traffic peak hour operating conditions and expected maximum queues at County Line Road \& Shady Lane/Development Driveway. The Year 2020 existing traffic analysis was performed using the existing transportation detail (Exhibit 3-1) and the Year 2020 adjusted existing traffic volumes (Exhibit 3-2b).

As shown, all movements at the study area intersections currently operate desirably at LOS D or better conditions.

LEGEND

Stop Sign
Existing Lane Configuration
$X X^{\prime} \quad$ Lane Storage (in Feet)
XX' Distance Between Roadways (in Feet)

LEGEND

XX Weekday Midday Peak Hour Volumes (12:00-1:00 PM)
(XX) Weekday PM Peak Hour Volumes (4:30-5:30 PM)
[XX] Saturday Midday Peak Hour Volumes (12:00-1:00 PM)

- \quad Negligible Traffic Volumes (Fewer than 3 vph)

*5 vph shown as eastbound-to-northbound left-turns are U-turn vehicles (Saturday Midday Peak Hour). U-turns at two-way stop controlled intersections are modeled as left-turns.

not to scale

LEGEND

XX Weekday Midday Peak Hour Volumes (12:00-1:00 PM)
(XX) Weekday PM Peak Hour Volumes (4:30-5:30 PM)
[XX] Saturday Midday Peak Hour Volumes (12:00-1:00 PM)

- \quad Negligible Traffic Volumes (Fewer than 3 vph)

*5 vph shown as eastbound-to-northbound left-turns are U-turn vehicles (Saturday Midday Peak Hour). U-turns at two-way stop controlled intersections are modeled as left-turns.

not to scale

Year 2020 Existing Traffic Operations \& Queues With Existing Geometrics

Intersection	Peak Hour	Metric	Level of Service per Movement by Approach											
			Eastbound			Westbound			Northbound			Southbound		
			LT	TH	RT									
 Shady Lane/Development Drwy (Two-Way Stop)	MID	LOS	A	*	*	A	*	*	C		B		C	
		Queue	20	*	*	20	*	*	2		20		20	
	PM	LOS	A	*	*	A	*	*	C		B		C	
		Queue	20	*	*	20	*	*	2		20		20	
	SAT	LOS	B	*	*	B	*	*	D		B		C	
		Queue	20	*	*	20	*	*	4		20		20	

$(-)$ indicates a movement that is prohibited or does not exist; (*) indicates a freeflow movement.
Queue is maximum of the 50 th $\& 95$ th percentile queue, measured in feet.

EXHIBIT 3-3 YEAR 2020 EXISTING TRAFFIC OPERATIONS \& QUEUES

CHAPTER IV - FORECASTED TRAFFIC

PART A - SITE TRAFFIC FORECASTING

To address potential future traffic impacts at the study area intersections, it is necessary to identify the hourly volume of traffic generated by proposed development. Traffic volumes expected to be generated are based on the size and type of the proposed uses and on trip rates as published in the ITE Trip Generation Manual, Tenth Edition.

A1. Trip Generation

Exhibit 4-1 shows the trip generation table for the Taco Bell Development. As shown, the Taco Bell Development is expected to generate 420 new trips ($210 \mathrm{in} / 210$ out) during a typical weekday, 40 new trips ($20 \mathrm{in} / 20$ out) during the weekday midday peak hour, 30 new trips (15 in/ 15 out) during the weekday evening peak hour, and 50 new trips ($25 \mathrm{in} / 25$ out) during the Saturday midday.
The Taco Bell Development is also expected to draw pass-by trips, or trips that occur when vehicles already on County Line Road stop at the Taco Bell before continuing on their intended route (e.g., an eastbound motorist on County Line Road today stops at Taco Bell then continues eastbound on County Line Road). The development is expected to generate 420 pass-by trips ($210 \mathrm{in} / 210$ out) during a typical weekday, 50 pass-by trips ($25 \mathrm{in} / 25$ out) during the weekday midday peak hour, 30 pass-by trips ($15 \mathrm{in} / 15$ out) during the weekday evening peak hour, and 50 pass-by trips ($25 \mathrm{in} / 25$ out) during the Saturday midday.
When added together, the Taco Bell Development is expected to generate 840 total driveway trips ($420 \mathrm{in} / 420$ out) during a typical weekday, 90 total driveway trips ($45 \mathrm{in} / 45$ out) during the weekday midday peak hour, 60 total driveway trips ($30 \mathrm{in} / 30$ out) during the weekday evening peak hour, and 100 total driveway trips ($50 \mathrm{in} / 50$ out) during the Saturday midday.

A2. Mode Split

Pedestrians and bicyclists may use their respective modes to access the identified development and to travel between development areas. However, these modes are expected to make up a negligible portion of the overall trips to/from the study area. For the purpose of this TIA, all trips to/from the proposed development areas were assumed to occur via motorized vehicle.

A3. Determination of Linked and Pass-By Trip Traffic

Linked trips occur when motorists visit more than one user within a site without entering the study area. By nature of the proposed development having only one user, linked trips will not occur.

Approximately 50% of the Taco Bell Development driveway trips are expected to be pass-by trips. Pass-by trips occur when a motorist already on the highway network stops at the development prior to continuing on their intended route (e.g., an eastbound motorist on County Line Road decides to stop at Taco Bell and then continues eastbound on County Line Road). The development is expected to generate 420 pass-by trips ($210 \mathrm{in} / 210$ out) during a typical weekday, 50 pass-by trips ($25 \mathrm{in} / 25$ out) during the weekday midday peak hour, 30 pass-by trips ($15 \mathrm{in} / 15$ out) during the weekday evening peak hour, and 50 pass-by trips ($25 \mathrm{in} / 25$ out) during the Saturday midday.

A4. Trip Distribution

The trip distribution for development traffic was estimated using existing traffic patterns and the location of IH 41 to the east of the development site. The trip distribution is shown with the trip generation table in Exhibit 4-1 and is summarized below.

- 55% to/from the east on County Line Road
- 45% to/from the west on County Line Road

A5. Trip Assignment

The development new trips were assigned to the study area based on the trip distribution previously identified. Pass-by trips were assigned based on existing traffic flows on County Line Road. The driveway trips were determined by summing the development's new and pass-by trips. The following is a list of exhibits where the trip assignments can be found.

- Exhibit 4-2a - Taco Bell New Trips
- Exhibit 4-2b - Taco Bell Pass-By Trips
- Exhibit 4-2c - Taco Bell Driveway Trips

Existing traffic to the planned Taco Bell Development site will no longer occur when the site is redeveloped. Exhibit 4-3 shows the removal of existing site trips.

PART B - BUILD TRAFFIC

The Year 2021 build traffic volumes, shown in Exhibit 4-4, were determined by summing the Year 2020 adjusted existing traffic volumes (Exhibit 3-2b), Taco Bell driveway trips (Exhibit 42c), and removal of existing site trips (Exhibit 4-3).

Taco Bell Trip Generation Table

	ITE		Weekday	Wko	y MID	eak	Wk	y PM	eak		AT Peak	
Land Use	Code	Proposed Size	Daily	In	Out	Total	In	Out	Total	In	Out	Total
Fast-Food Restaurant with Drive-Through	934	$1.8 \times 1,000 \mathrm{SF}$	$\begin{gathered} 840 \\ (470.95) \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ (51 \%) \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ (49 \%) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 90 \\ (51.36) \\ \hline \end{array}$	$\begin{gathered} 30 \\ (52 \%) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (48 \%) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 60 \\ (32.67) \\ \hline \end{array}$	$\begin{gathered} 50 \\ (51 \%) \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ (49 \%) \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ (54.86) \\ \hline \end{gathered}$
Total Driveway Trips			840	45	45	90	30	30	60	50	50	100
Minus Pass-by Trips		50\%	420	25	25	50	15	15	30	25	25	50
Total New Trips			420	20	20	40	15	15	30	25	25	50

The Weekday Midday Peak trip generation estimates equal the PM Peak of Generator. Per ITE, PM Peak of Generator is 12:00 to 1:00pm.
TRIP DISTRIBUTION

East on County Line Road	55\%	230	10	10	10	10	15	15
West on County Line Road	45\%	190	10	10	5	5	10	10
	100\%	420	20	20	15	15	25	25

LEGEND

XX Weekday Midday Peak Hour Volumes (12:00-1:00 PM)
(XX) Weekday PM Peak Hour Volumes (4:30-5:30 PM)
[XX] Saturday Midday Peak Hour Volumes (12:00-1:00 PM)

- \quad Negligible Traffic Volumes (Fewer than 3 vph)

LEGEND

XX Weekday Midday Peak Hour Volumes (12:00-1:00 PM)
(XX) Weekday PM Peak Hour Volumes (4:30-5:30 PM)
[XX] Saturday Midday Peak Hour Volumes (12:00-1:00 PM)

- \quad Negligible Traffic Volumes (Fewer than 3 vph)

LEGEND

XX Weekday Midday Peak Hour Volumes (12:00-1:00 PM)
(XX) Weekday PM Peak Hour Volumes (4:30-5:30 PM)
[XX] Saturday Midday Peak Hour Volumes (12:00-1:00 PM)

- \quad Negligible Traffic Volumes (Fewer than 3 vph)

LEGEND

XX Weekday Midday Peak Hour Volumes (12:00-1:00 PM)
(XX) Weekday PM Peak Hour Volumes (4:30-5:30 PM)
[XX] Saturday Midday Peak Hour Volumes (12:00-1:00 PM)

- \quad Negligible Traffic Volumes (Fewer than 3 vph)

LEGEND

XX Weekday Midday Peak Hour Volumes (12:00-1:00 PM)
(XX) Weekday PM Peak Hour Volumes (4:30-5:30 PM)
[XX] Saturday Midday Peak Hour Volumes (12:00-1:00 PM)

- \quad Negligible Traffic Volumes (Fewer than 3 vph)

*5 vph shown as eastbound-to-northbound left-turns are U-turn vehicles (Saturday Midday Peak Hour). U-turns at two-way stop controlled intersections are modeled as left-turns.

not to scale

CHAPTER V - TRAFFIC AND MODIFICATION ANALYSIS

PART A - SITE ACCESS

The existing Development Driveway, located opposite Shady Lane, will service the Taco Bell Development.
Cross-access to Fleet Farm, located immediately west of the development site, is not possible due to the location of a structure on the Fleet Farm site that extends from County Line Road to the main Fleet Farm building.

PART B - CAPACITY LEVEL OF SERVICE ANALYSIS

The analysis for Year 2021 build traffic volumes was performed using the existing transportation detail shown in Exhibit 3-1 and the Year 2021 build traffic volumes shown in Exhibit 4-4. The Year 2021 build traffic operations with Taco bell are shown in Exhibit 5-1.

The results of the analysis show that, with the latest traffic signal timings in place along County Line Road to the east and west of Shady Lane/Development Driveway, gaps in the eastbound and westbound traffic streams are expected to be sufficient to accommodate LOS D or better operations at the County Line Road \& Shady Lane/Development Driveway intersection with completion of the Taco Bell.

PART C - QUEUEING ANALYSIS

To estimate storage length requirements for turn bays at the study area intersections with modifications, a queuing analysis has been conducted. The $50^{\text {th }}$ percentile and $95^{\text {th }}$ percentile probable queue lengths were used in conjunction with WisDOT Facilities Development Manual (FDM) 11-25-5 to determine the recommended turn bay storage at study area intersections and to ensure turn lanes are sufficient. The expected maximum queue lengths are shown in tabular format with the LOS tables in Exhibit 3-3 and Exhibit 5-1.

PART D - SPEED CONSIDERATIONS/SIGHT DISTANCE

The party responsible for designing the intersections will be responsible for cross-checking, verifying, and designing for all applicable sight distances. The following sight intersection sight distance (ISD) and stopping sight distance (SSD) calculations and results are based on site observations and recommended modifications.

D1. Methodology

Intersections should be designed for ISD and SSD in accordance with the American Association of State Highway Transportation Officials (AASHTO) A Policy on Geometric Design of Highways and Streets (GDHS).

- ISD is the distance at which a motorist departing from a stopped position should have an unobstructed view of approaching vehicles so-as to safely cross or merge with traffic. All points between that distance and the departing motorist should be unobstructed.
- SSD is the distance at which a motorist on a roadway can perceive and react to an obstruction on the road and come to complete stop. All points from that distance to complete stop should be unobstructed.
Due to the nature of the proposed development, passenger (P) vehicles and single unit truck (SU) vehicles are the design vehicles for which ISD must be met. Additionally, per AASHTO, Pvehicles are the design vehicles for which SSD must be met (it is assumed in the AASHTO methodology that an SU-vehicle motorist sits higher than a P-vehicle motorist and can perceive
an obstruction earlier, and can therefore react sooner to make up for longer stopping distances, than a P-vehicle motorist).

In evaluating ISD, the departing motorist's eye is assumed to be located 14.5 -feet from the edge of the intersecting road. The eye of departing motorist is assumed to be located at a height of 3.5 -feet off the roadway if sitting in a P-vehicle and 7.6 -feet if sitting in a SU-vehicle. The object that is to be seen upstream of the intersection by a departing motorist is assumed to be 3.5 -feet off the surface of the roadway regardless of vehicle type.

In evaluating SSD, the motorist's eye is assumed to be located at a height of 3.5 -feet off the roadway. The object that is to be seen in the roadway is assumed to be 2.0 -feet off the surface of the roadway.

D2. Development Driveway ISD \& SSD Evaluation

The Menomonee River passes under County Line Road immediately east of Shady Lane/Development Driveway. A fence exists along the north edge of the bridge and, along with vegetation, blocks the line of sight for P-vehicle motorists wishing to turn right or cross from the Development Driveway onto County Line Road. Washington County requested that an ISD evaluation occur for motorists exiting the Development Driveway and looking to their left towards westbound oncoming traffic. An SSD evaluation was also performed for westbound motorists approaching the Development Driveway from the east.
The ISD evaluation was performed using a design speed of 5 mph above the posted speed limit of 35 mph , or 40 mph . Based on the assumptions previously outlined, motorists wishing to turn left, right, or cross from the Development Driveway require a minimum ISD to their left (facing westbound traffic) of 415 -feet (P-vehicle) and 540-feet (SU-vehicle). See Appendix A for calculations.

As shown in Exhibit 5-2a, ISD is not met for P-vehicle motorists looking left (facing westbound traffic). The issue is the location of the bridge fence that blocks the line of sight at the eye setback of 14.5 -feet. If the eye were moved to 5.0 -feet from the edge of the road, the 415 -foot distance would be met but the front of the vehicle would be in the auxiliary lane. ISD is met for SU-vehicle motorists as shown in Exhibit 5-2b.

Modifications to improve lines of sight are outlined in Chapter VI and include removing vegetation and moving the curb line at the driveway south in a manner to safely improve the motorist's position in seeing around the fence. Though the desired distance of 14.5 -feet from the traveled way to the motorist's eye is not expected to be met, a minimum of 8 -feet or more is expected to be provided with the curb line moved south. Per AASHTO, "Measurements of passenger vehicles indicate that the distance from the front of the vehicle to the driver's eye for the current U.S. passenger car population is nearly always $2.2 \mathrm{~m}[8 \mathrm{ft}]$ or less."

The SSD for a design speed of $50-\mathrm{mph}$ is 305 -feet. As shown in Exhibit $5-2 \mathrm{c}$, SSD is expected to be met on the westbound approach to the driveway.

PART E - CRASH SUMMARY

TADI obtained crash data for County Line Road \& Shady Lane/Development Driveway. The data included all reportable crashes from January 1, 2015 through December 31, 2019 - a fiveyear (60 month) period. An intersection collision diagram is shown in Exhibit 5-3. The following is a summary of the crash data.

- Nine reportable crashes occurred within the 60 -month period, or an average of 1.8 crashes per year. The calculated crash rate is approximately 0.17 crashes per million entering vehicles (MEV), which is well below the average crash rate of 0.88 crashes per

MEV for minor-street stop controlled urban intersections as reported in Intersection Crash Summary Statistics for Wisconsin (Knapp, Keith K and John Campbell, 2002).

- Five of the nine crashes involved a motorist northbound from Shady Lane being struck by an eastbound motorist (two crashes) or westbound motorist (three crashes). One of the nine crashes involved a motorist southbound from the Development Driveway being stuck by a westbound motorist. Two of the nine crashes were westbound sideswipe crashes. The last of the nine crashes occurred east of the intersection and was a rear-end crash.
- All nine crashes were reported as being PDO (property damage only) crashes. That is, no injuries or suspected injuries were reported.
- Six of the nine crashes occurred between the hours of 11:00am and 2:00pm (four on weekdays, two on weekends).
As mentioned, the intersection crash rate is low. Possible factors contributing to these past crashes include motorists poorly judging gaps in traffic or accepting smaller gaps than necessary to safely cross. Traffic back-ups from the Fleet Farm/Bank Driveways traffic signal may also be a contributing factor, especially during the midday rush hours. The recent retiming of County Line Road is expected to better manage traffic back-ups at the Fleet Farm/Bank Driveways. Additionally, as reflected in the traffic analysis, the recent retiming is expected to create safe gap opportunities to accommodate traffic from the Shady Lane and Development Driveway approaches at LOS D or better operations.

Year 2021 Build Traffic Operations \& Queues (With Taco Bell)
With Existing Geometrics

Intersection	Peak Hour	Metric	Level of Service per Movement by Approach											
			Eastbound			Westbound			Northbound			Southbound		
			LT	TH	RT									
 Shady Lane/Development Drwy (Two-Way Stop)	MID	LOS	A	*	*	A	*	*	C		B		C	
		Queue	20	*	*	20	*	*	2	0	20		20	
	PM	LOS	A	*	*	A	*	*	C		B		C	
		Queue	20	*	*	20	*	*	2	0	20		20	
	SAT	LOS	B	*	*	B	*	*	D	D	B		C	
		Queue	20	*	*	20	*	*	5	0	20		20	

$(-)$ indicates a movement that is prohibited or does not exist; (*) indicates a freeflow movement.
Queue is maximum of the 50 th $\& 95$ th percentile queue, measured in feet.

Intersection Collision Diagram

Location:
Municipality:
County:
Traffic Control:

From:	$1 / 1 / 2015$	5	Years	
To:	$12 / 31 / 2019$	0	Months	
AADT:	28,750		MAP	
Area Type:	Urban			
GPS Coordinates:	43.192046,	-88.133086		

YEAR	K	A	B	C	PDO	TOT.
2015	0	0	0	0	3	3
2016	0	0	0	0	0	0
2017	0	0	0	0	1	1
2018	0	0	0	0	3	3
2019	0	0	0	0	2	2
TOTAL	0	0	0	0	9	9

W_{6}
$+\quad$
$\frac{1}{4} 1$

$$
\leftarrow_{3}^{W B_{2}}
$$

CTH Q-County Line Rd
$\mathrm{NB}_{2} \rightarrow 2$
CTH Q-County Line Rd

	12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3
MON	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
TUE	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
WED	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
THU	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
FRI	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	
SAT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
SUN	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
	12 AM	1 AM	2 AM	3 AM	4AM	5 AM	6AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3
тот.	0	0	0	0	0	0	0	0	1	0	0	1	3	2	0	

CHAPTER VI - RECOMMENDATIONS AND CONCLUSION

PART A - RECOMMENDED MODIFICATIONS

Recommended modifications are for jurisdictional consideration and are not legally binding. Washington County and the Village of Germantown reserve the right to determine alternative solutions.

The Menomonee River passes under County Line Road immediately east of Shady Lane/Development Driveway. A fence exists along the north edge of the bridge and, along with vegetation, blocks the line of sight for passenger vehicle motorists wishing to turn or cross from the Development Driveway onto County Line Road. The following modifications, shown in Exhibit 1-3, are recommended to improve lines of sight.

- Remove vegetation growing within the bridge's fence west of the Menomonee River centerline and correct the west end of the fence such that the westernmost point is adjusted north.
- The curb of the north side of County Line Road currently shifts approximately 5- to 6feet north on the approach and departure sides of the Development Driveway. Shift the curb line at the driveway south to track County Line Road such that the auxiliary lane width in front of the driveway is consistent with the auxiliary lane width east of the intersection. This modification will allow motorists to safety position themselves approximately 5 - to 6 -feet closer to the roadway and, by doing so, improve lines of sight past the bridge fence to see oncoming westbound traffic on County Line Road.
- The median-side stop sign on the Shady Lane approach to County Line Road is located on the wrong side of the crosswalk. Relocate the stop sign to the south side of the crosswalk (i.e., stop before the crosswalk).
The results of the analysis show that, with the latest traffic signal timings in place along County Line Road to the east and west of Shady Lane/Development Driveway, gaps in the eastbound and westbound traffic streams are expected to be sufficient to accommodate LOS D or better operations for all movements at the County Line Road \& Shady Lane/Development Driveway intersection with Taco Bell.

PART B - CONCLUSION

All movements to/from the Taco Bell Development are expected to operate safely and efficiently with the assumptions outlined in this TIA and the identified recommended modifications if properly designed and implemented.

APPENDIX A

TRAFFIC

APPENDIX A

Existing Turning Movement Traffic Counts

Count Basics	Version 2013.J4.1	Page 1 of 13	
Start Date:	Wednesday, December 2, 2020	Weekday	Schools in Session
Total Number of Hours Counted: 4	Non-Holiday	No Special Events	

Base Information, Observed (4) Hour and Estimated (24) Hour Volume Summaries

Intersection of: Shady Lane and CTH Q

Site Information

Municipality Village of Germantown		
County Washi	Washington WisDOT	WisDOT Region SE
Traffic Control Partial Stop Control		
Roadway Names	(North Directio	n
North Leg Shady Lane		
East Leg CTH Q		
South Leg Shady Lane		
West Leg CTH Q		
Special Considerations		
Schools In Session		
Holidays None		
Special Events None		
Special Pedestrians Observed		
Pre-school children None		
Elementry school age children		None
Visually impaired (white cane/helper dog)		None
Elderly/disabled (except wheelchairs)		None
Wheelchairs/electric scooters		None
Other (describe)	[None	None

Count Information

Hrs Counted: 11:00 AM-1:00 PM and 4:00 PM-6:00 PM				
1st Day of Count		Wednesday, December 2, 2020		Weather
AM Peak Period		Wednesday, December 2, 2020		Clear \& Dry
Midday Peak Period		Thursday, December 3, 2020		Clear \& Dry
PM Peak Period		Wednesday, De	cember 2, 2020	Clear \& Dry
Calculated Peak Hours				
AM		MD	12:00-1:00pm	PM 14:30-5:30pm
Peak Hours Selected for Analysis				
AM		MD	12:00-1:00pm	PM 14:30-5:30pm
Daily/Seasonal Adjustment Group (2) Urban Arterials \& Collectors				
Count Expansion Group (2) Urban Arterials \& Collectors				
Daily/Seasonal Adjustment Factor 1.025			Count Expansion Factor \#N/A	
Company Name\|TADI, Inc				Manual Adj. 1.000
Observers	AM Peak Period None			
	Midday Peak Period		Amy Scheuerlein	
	PM Peak Period		Amy Scheuerlein	
Comments 2	2019 D	DOT Seasonal Fac	ators	

Observed 4 Hour Volume Summary

Estimated 24 Hour AADT

Intersection Traffic Volume Report

Count Basics	Page 2 of 13				
Start Date:	Wednesday, December 2, 2020	Weekday	Schools in Session	Total Number of Hours Counted: 4	Non-Holiday
:---	:---				

Peak Hour Volume Graphical Summary

Shady Lane and CTH Q

AM Peak Hour Summary

Midday (MD) Peak Hour Summary

PM Peak Hour Summary

Peak Hour Volume Summary

Peak Hour Volumes, Truck Percentages, and PHFs

Wednesday, December 2, 2020		From North					From East					From South					From West					Totals
	AM Peak Hour	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Start Time	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Peak Hour Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rounded Hourly Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\% Single Unit Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	\% Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	\% Trucks (Total)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Peak Hour Factor (PHF)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Wednesday, December 2, 2020		From North					From East					From South					From West					Totals
	MD Peak Hour	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Start Time	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	12:00 PM	2	0	0	0	2	0	242	4	0	246	16	0	13	0	29	11	201	0	0	212	489
	12:15 PM	1	0	0	0	1	2	265	11	2	280	12	0	9	0	21	19	216	2	0	237	539
	12:30 PM	1	1	1	0	3	1	227	5	0	233	15	0	19	0	34	15	183	0	0	198	468
	12:45 PM	0	0	2	0	2	2	244	8	0	254	18	0	8	0	26	12	213	0	0	225	507
	Peak Hour Volume	4	1	3	0	8	5	978	28	2	1013	61	0	49	0	110	57	813	2	0	872	2003
	Rounded Hourly Volume	5	0	5	0	10	5	980	30	0	1015	60	0	50	0	110	55	815	0	0	870	2005
	\% Single Unit Trucks	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	0.0	0.0	3.1	2.3
	\% Heavy Trucks	25.0	0.0	0.0	0.0	12.5	0.0	0.9	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.6	0.7
	\% Trucks (Total)	25.0	0.0	0.0	0.0	12.5	0.0	3.0	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	3.9	0.0	0.0	3.7	3.1
	Peak Hour Factor (PHF)	0.50	0.25	0.37	0.00	0.67	0.62	0.92	0.64	0.25	0.90	0.85	0.00	0.64	0.00	0.81	0.75	0.94	0.25	0.00	0.92	0.93

Wednesday, December 2, 2020		From North					From East					From South					From West					Totals
	PM Peak Hour	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Start Time	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	4:30 PM	2	2	0	0	4	0	274	17	0	291	13	0	13	0	26	21	228	1	0	250	571
	4:45 PM	1	0	1	0	2	1	273	13	1	288	23	0	10	0	33	12	213	0	0	225	548
	5:00 PM	1	0	2	0	3	0	279	9	0	288	27	0	10	0	37	13	222	0	0	235	563
	5:15 PM	0	0	0	0	0	0	269	13	1	283	10	0	16	0	26	15	218	1	0	234	543
	Peak Hour Volume	4	2	3	0	9	1	1095	52	2	1150	73	0	49	0	122	61	881	2	0	944	2225
	Rounded Hourly Volume	5	0	5	0	10	0	1095	50	0	1145	75	0	50	0	125	60	880	0	0	940	2220
	\% Single Unit Trucks	0.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	1.6	1.2	0.0	0.0	1.3	1.3
	\% Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	\% Trucks (Total)	0.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	1.6	1.2	0.0	0.0	1.3	1.3
	Peak Hour Factor (PHF)	0.50	0.25	0.37	0.00	0.56	0.25	0.98	0.76	0.50	0.99	0.68	0.00	0.77	0.00	0.82	0.73	0.97	0.50	0.00	0.94	0.97

Peak Hour Pedestrian and Bicyclist Volumes

Pedestrians and Bicyclists		Crossing North Approach			Crossing East Approach			Crossing South Approach			Crossing			Total Ped \& Bike Volume
	n \bigcirc	Shady Lane			CTH Q			Shady Lane			CTH Q			
	15-Minute Start Time	Pedestrian	Bicyclist	Total										
$\underset{\underset{4}{ }}{ }$	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
$\stackrel{Q}{\Sigma}$	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
\sum	4:30 PM	1	0	1	0	0	0	0	0	0	0	0	0	1
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	1	0	1	0	0	0	0	0	0	0	0	0	1

Intersection Traffic Volume Report

Hourly Volume Summary - Motor Vehicle Data

Shady Lane and CTH Q
One-Hour Motor Vehicle Data

One-Hour Time Period Start Time		From North					From East					From South					From West					Total Vehicle Volume	Directional Volume Totals	
		Shady Lane					CTH Q					Shady Lane					CTH Q							
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total		E/W	N/S
$\frac{\sum}{4}$	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Q	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	4	0	1	0	5	2	831	51	1	885	49	0	60	0	109	62	697	2	0	761	1760	1646	114
	12:00 PM	4	1	3	0	8	5	978	28	2	1013	61	0	49	0	110	57	813	2	0	872	2003	1885	118
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\sum	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	4	2	2	0	8	2	1079	64	1	1146	58	0	42	0	100	56	868	2	1	927	2181	2073	108
	5:00 PM	2	1	2	0	5	0	979	43	1	1023	58	0	43	0	101	55	826	1	0	882	2011	1905	106
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Totals		14	4	8	0	26	9	3867	186	5	4067	226	0	194	0	420	230	3204	7	1	3442	7955	7509	446

Graphical Summary of Hourly Volumes

(For example, 6am represents volumes from 6am to 7am)

Intersection Traffic Volume Report

15-Minute Motor Vehicle Data

Shady Lane and CTH Q

15-Minute Motor Vehicle Data

15-Minute Time Period Start Time		From North					From East CTH Q					From South Shady Lane					From West CTH Q					15-Min Totals	Hourly Sum	PHF
		Shady Lane																						
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total			
	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
00000000000000	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	11:00 AM	1	0	0	0	1	0	178	13	0	191	11	0	13	0	24	15	154	1	0	170	386	1760	0.89
	11:15 AM	2	0	0	0	2	0	218	12	0	230	13	0	17	0	30	14	193	1	0	208	470	1863	0.94
	11:30 AM	1	0	1	0	2	2	191	11	1	205	9	0	13	0	22	14	165	0	0	179	408	1932	0.90
	11:45 AM	0	0	0	0	0	0	244	15	0	259	16	0	17	0	33	19	185	0	0	204	496	1992	0.92
	12:00 PM	2	0	0	0	2	0	242	4	0	246	16	0	13	0	29	11	201	0	0	212	489	2003	0.93
	12:15 PM	1	0	0	0	1	2	265	11	2	280	12	0	9	0	21	19	216	2	0	237	539		
	12:30 PM	1	1	1	0	3	1	227	5	0	233	15	0	19	0	34	15	183	0	0	198	468		
	12:45 PM	0	0	2	0	2	2	244	8	0	254	18	0	8	0	26	12	213	0	0	225	507		
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0000000000	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	4:00 PM	0	0	1	0	1	1	267	15	0	283	10	0	9	0	19	13	207	0	0	220	523	2181	0.95
	4:15 PM	1	0	0	0	1	0	265	19	0	284	12	0	10	0	22	10	220	1	1	232	539	2221	0.97
	4:30 PM	2	2	0	0	4	0	274	17	0	291	13	0	13	0	26	21	228	1	0	250	571	2225	0.97
	4:45 PM	1	0	1	0	2	1	273	13	1	288	23	0	10	0	33	12	213	0	0	225	548	2143	0.95
	5:00 PM	1	0	2	0	3	0	279	9	0	288	27	0	10	0	37	13	222	0	0	235	563	2011	0.89
	5:15 PM	0	0	0	0	0	0	269	13	1	283	10	0	16	0	26	15	218	1	0	234	543		
	5:30 PM	1	1	0	0	2	0	240	11	0	251	8	0	5	0	13	13	210	0	0	223	489		
	5:45 PM	0	0	0	0	0	0	191	10	0	201	13	0	12	0	25	14	176	0	0	190	416		
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Tota		14	4	8	0	26	9	3867	186	5	4067	226	0	194	0	420	230	3204	7	1	3442	7955		

Peak Hour All Vehicle Volume Summary

Hourly Time Period Start Time	From North					From East					From South					From West					Total Hourly Volume	PHF
	Shady Lane					CTH Q					Shady Lane					CTH Q						
	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	$\mathrm{U}-\mathrm{Tn}$	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total		
AM 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MD 12:00 PM	4	1	3	0	8	5	978	28	2	1013	61	0	49	0	110	57	813	2	0	872	2003	0.93
PM 4:30 PM	4	2	3	0	9	1	1095	52	2	1150	73	0	49	0	122	61	881	2	0	944	2225	0.97

Intersection Traffic Volume Report

15-Minute Automobile Data

Shady Lane and CTH Q

15-Minute Automobile Data

15-Minute Time Period Start Time		From North					From East					From South					From West					15-Min Totals
		Shady Lane					CTH Q					Shady Lane										
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
4	6:00 AM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:45 AM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	1	0	0	0	1	0	172	13	0	185	11	0	13	0	24	14	145	1	0	160	370
	11:15 AM	2	0	0	0	2	0	210	11	0	221	13	0	17	0	30	13	185	1	0	199	452
	11:30 AM	1	0	1	0	2	1	184	11	1	197	9	0	13	0	22	14	159	0	0	173	394
	11:45 AM	0	0	0	0	0	0	235	15	0	250	15	0	17	0	32	19	175	0	0	194	476
	12:00 PM	1	0	0	0	1	0	233	4	0	237	16	0	13	0	29	11	192	0	0	203	470
	12:15 PM	1	0	0	0	1	2	259	11	2	274	12	0	9	0	21	19	210	2	0	231	527
	12:30 PM	1	1	1	0	3	1	221	5	0	227	15	0	19	0	34	15	176	0	0	191	455
	12:45 PM	0	0	2	0	2	2	236	8	0	246	18	0	8	0	26	12	203	0	0	215	489
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:30 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	0	0	1	0	1	1	261	15	0	277	10	0	9	0	19	13	200	0	0	213	510
	4:15 PM	1	0	0	0	1	0	263	19	0	282	12	0	10	0	22	10	212	1	1	224	529
	4:30 PM	2	2	0	0	4	0	270	17	0	287	13	0	13	0	26	20	223	1	0	244	561
	4:45 PM	1	0	1	0	2	1	268	13	1	283	23	0	10	0	33	12	211	0	0	223	541
	5:00 PM	1	0	2	0	3	0	276	9	0	285	27	0	10	0	37	13	221	0	0	234	559
	5:15 PM	0	0	0	0	0	0	264	13	1	278	10	0	16	0	26	15	215	1	0	231	535
	5:30 PM	1	1	0	0	2	0	236	11	0	247	8	0	5	0	13	13	208	0	0	221	483
	5:45 PM	0	0	0	0	0	0	191	10	0	201	13	0	12	0	25	14	173	0	0	187	413
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Totals		13	4	8	0	25	8	3779	185	5	3977	225	0	194	0	419	227	3108	7	1	3343	7764

Intersection Traffic Volume Report

15-Minute Single Unit (SU) Truck \& Bus Data

15-Minute Time Period Start Time		From North					From East					From South					From West CTH Q					15-Min Totals
		Shady Lane					CTH Q					Shady Lane										
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
0000000084	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000000000000	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	1	7	0	0	8	13
	11:15 AM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	1	7	0	0	8	13
	11:30 AM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	5	0	0	5	11
	11:45 AM	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	0	6	0	0	6	15
	12:00 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	8	0	0	8	14
	12:15 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	4	0	0	4	7
	12:30 PM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	6	0	0	6	11
	12:45 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	9	0	0	9	15
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Peak Period	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	7	0	0	7	13
	4:15 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	8	0	0	8	9
	4:30 PM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	1	5	0	0	6	10
	4:45 PM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	2	0	0	2	7
	5:00 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	4
	5:15 PM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	3	0	0	3	8
	5:30 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	4
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	3
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tota		0	0	0	0	0	0	72	0	0	72	0	0	0	0	0	3	82	0	0	85	157

Peak Hour Single Unit (SU) Truck \& Buses Volume Summary

Hourly Time Period Start Time		From North					From East					From South					From West					Total Hourly Volume
		Shady Lane					CTH Q					Shady Lane					CTH Q					
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
AM	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MD	12:00 PM	0	0	0	0	0	0	20	0	0	20	0	0	0	0	0	0	27	0	0	27	47
PM	4:30 PM	0	0	0	0	0	0	17	0	0	17	0	0	0	0	0	1	11	0	0	12	29

Intersection Traffic Volume Report

15-Minute Semi-Truck Data

Shady Lane and CTH Q

15-Minute Semi-Truck Data

15-Minute Time Period Start Time		From North					From East					From South					From West					$\begin{array}{\|l} \text { 15-Min } \\ \text { Totals } \end{array}$	Hourly Sum
		Shady Lane					CTH Q																
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total		
O0000000084	6:00 AM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:00 AM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	11:00 AM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	3	16
	11:15 AM	0	0	0	0	0	0	3	1	0	4	0	0	0	0	0	0	1	0	0	1	5	18
	11:30 AM	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	0	1	0	0	1	3	18
	11:45 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	4	0	0	4	5	17
	12:00 PM	1	0	0	0	1	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	5	15
	12:15 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	2	0	0	2	5	
	12:30 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	2	
	12:45 PM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	3	
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:00 PM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:00 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	1
	4:15 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:30 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	2	
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:30 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Totals		1	0	0	0	1	1	16	1	0	18	1	0	0	0	1	0	14	0	0	14	34	

Peak Hour Semi-Truck Volume Summary

Hourly Time Period Start Time						From East					From South					From West					Total Hourly Volume
	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
AM 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MD 12:00 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	4	0	0	4	10
PM 4:30 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1

Intersection Traffic Volume Report

15-Minute Heavy Vehicle Data

Shady Lane and CTH Q
15-Minute Heavy Vehicle Data

15-Minute Time Period Start Time		From North					From East					From South					From West					15-Min Totals
		Shady Lane					CTH Q					Shady Lane					CTH Q					
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	6:00 AM	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	1	9	0	0	10	16
	11:15 AM	0	0	0	0	0	0	8	1	0	9	0	0	0	0	0	1	8	0	0	9	18
	11:30 AM	0	0	0	0	0	1	7	0	0	8	0	0	0	0	0	0	6	0	0	6	14
	11:45 AM	0	0	0	0	0	0	9	0	0	9	1	0	0	0	1	0	10	0	0	10	20
	12:00 PM	1	0	0	0	1	0	9	0	0	9	0	0	0	0	0	0	9	0	0	9	19
	12:15 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	6	0	0	6	12
	12:30 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	7	0	0	7	13
	12:45 PM	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	0	10	0	0	10	18
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\|o	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	7	0	0	7	13
	4:15 PM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	8	0	0	8	10
	4:30 PM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	1	5	0	0	6	10
	4:45 PM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	2	0	0	2	7
	5:00 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	4
	5:15 PM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	3	0	0	3	8
	5:30 PM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	2	0	0	2	6
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	3
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	9:45 PM	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Tota		1	0	0	0		1	88	1	0	90	1	0	0	0	1	3	96	0	0	99	191

Hourly
Sum

Intersection Traffic Volume Report

15-Minute Heavy Vehicle Percentages

15-Minute Time Period Start Time		From North					From East										From West					Total Heavy Vehicle Percent
		Shady Lane					CTH Q					Shady Lane					CTH Q					
		Right	Thru	Left	U -Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	6:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	6:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0	0.0
	11:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	3.4	0.0	0.0	3.1	0.0	0.0	0.0	0.0	0.0	6.7	5.8	0.0	0.0	5.9	4.1
	11:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	3.7	8.3	0.0	3.9	0.0	0.0	0.0	0.0	0.0	7.1	4.1	0.0	0.0	4.3	3.8
	11:30 AM	0.0	0.0	0.0	0.0	0.0	50.0	3.7	0.0	0.0	3.9	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	3.4	
	11:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	3.7	0.0	0.0	3.5	6.2	0.0	0.0	0.0	3.0	0.0	5.4	0.0	0.0	4.9	4.0
	12:00 PM	50.0	0.0	0.0	0.0	50.0	0.0	3.7	0.0	0.0	3.7	0.0	0.0	0.0	0.0	0.0	0.0	4.5	0.0	0.0	4.2	3.9
	12:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	2.3	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0		2.2
	12:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	3.5	2.8
	12:45 PM	0.0	0.0	0.0	0.0		0.0	3.3	0.0	0.0	3.1	0.0	0.0	0.0	0.0		0.0	4.7	0.0	0.0		
	1:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	1:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	2:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	2:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	3:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
	3:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	4:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	3.4	0.0	0.0	3.2	2.5
	4:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	3.4	1.9
	4:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0		0.0	0.0	0.0	0.0		4.8	2.2	0.0	0.0	24	1.8
	4:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.9	1.3
	5:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.4	0.7
	5:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	1.3	1.5
	5:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.7	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.9	1.2
	5:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	0.0	0.0	1.6	0.7
	6:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0
	9:45 PM	0.0	0.0	0.0	0.0		0.0	0.0				0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total		7.1	0.0	0.0	0.0	3.8	11.1	2.3	0.5	0.0	2.2	0.4	0.0	0.0	0.0	0.2	1.3	3.0	0.0	0.0	2.9	2.4

Peak Hour Heavy Vehicle Percentages Summary

Hourly Time Period Start Time	From North					From East					From South					From West					$\begin{aligned} & \text { Hourly } \\ & \text { Heavy } \\ & \text { Vehicle } \\ & \text { Percent } \end{aligned}$
	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
AM 8:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MD 12:00 PM	25.0	0.0	0.0	0.0	12.5	0.0	3.0	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	3.9	0.0	0.0	3.7	3.1
PM 4:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	1.6	1.2	0.0	0.0	1.3	1.3

Base Information, Observed (2) Hour and Estimated (24) Hour Volume Summaries

Intersection of: Shady Lane and CTH Q

Site Information

Municipality			Village of Germantown
County	Washington	WisDOT Region	
Traffic Control	Partial Stop Control		
Roadway Names	North Direction	\uparrow	
North Leg	Shady Lane		
East Leg	CTH Q		
South Leg	Shady Lane		
West Leg	CTH Q		
Special Considerations			
Schools	In Session		
Holidays	None		
Special Events	None		
Special Pedestrians Observed	Pre-school children	None	
Elementry school age children			None
Visually impaired (white cane/helper dog)			None
Elderly/disabled (except wheelchairs)			None
Wheelchairs/electric scooters			None
Other (describe)			None

Count Information

Observed 2 Hour Volume Summary

Estimated 24 Hour AADT

Intersection Traffic Volume Report
\square

AM Peak Hour Summary

Midday (MD) Peak Hour Summary

PM Peak Hour Summary

Peak Hour Volume Summary

Peak Hour Volumes, Truck Percentages, and PHFs

Saturday, December 5, 2020		From North					From East					From South					From West					Totals
	AM Peak Hour	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Start Time	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Peak Hour Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rounded Hourly Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\% Single Unit Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	\% Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	\% Trucks (Total)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Peak Hour Factor (PHF)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Saturday, December 5, 2020		From North					From East					From South					From West					Totals
	MD Peak Hour	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Start Time	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	12:00 PM	0	0	0	0	0	0	296	19	1	316	36	0	16	0	52	32	285	0	0	317	685
	12:15 PM	0	0	0	0	0	0	345	11	0	356	31	0	18	1	50	28	300	0	0	328	734
	12:30 PM	0	0	0	0	0	1	306	13	0	320	27	0	25	0	52	27	259	0	2	288	660
	12:45 PM	2	0	0	0	2	0	362	16	0	378	29	0	25	0	54	21	274	1	1	297	731
	Peak Hour Volume	2	0	0	0	2	1	1309	59	1	1370	123	0	84	1	208	108	1118	1	3	1230	2810
	Rounded Hourly Volume	0	0	0	0	0	0	1310	60	0	1370	125	0	85	0	210	110	1120	0	5	1235	2815
	\% Single Unit Trucks	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	1.1	0.9
	\% Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0
	\% Trucks (Total)	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	1.1	1.0
	Peak Hour Factor (PHF)	0.25	0.00	0.00	0.00	0.25	0.25	0.90	0.78	0.25	0.91	0.85	0.00	0.84	0.25	0.96	0.84	0.93	0.25	0.37	0.94	0.96

Saturday, December 5, 2020		From North					From East					From South					From West					Totals
PM Peak Hour Start Time		Shady Lane					CTH Q					Shady Lane					CTH Q					
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
101$\vdots$$\vdots$0000	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Peak Hour Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rounded Hourly Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\% Single Unit Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	\% Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	\% Trucks (Total)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Peak Hour Factor (PHF)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Peak Hour Pedestrian and Bicyclist Volumes

Pedestrians and Bicyclists		Crossing North Approach			Crossing East Approach			Crossing South Approach						Total Ped \& Bike Volume
	n \bigcirc	Shady Lane			CTH Q			Shady Lane			CTH Q			
	15-Minute Start Time	Pedestrian	Bicyclist	Total										
$\frac{\sum}{4}$	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
$\stackrel{Q}{\Sigma}$	12:00 PM	0	0	0	0	0	0	1	0	1	0	0	0	1
	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:30 PM	0	0	0	0	0	0	1	0	1	0	0	0	1
	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	2	0	2	0	0	0	2
\sum	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	0	0	0	0	0	0	0

Intersection Traffic Volume Report

Hourly Volume Summary - Motor Vehicle Data

Shady Lane and CTH Q
One-Hour Motor Vehicle Data

One-Hour Time Period Start Time		From North					From East					From South					From West					Total Vehicle Volume	Directional Volume Totals	
		Shady Lane					CTH Q					Shady Lane					CTH Q							
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total		E/W	N/S
$\overline{<}$	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\stackrel{Q}{\Sigma}$	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	1	0	2	0	3	2	1179	71	2	1254	95	0	85	0	180	113	964	0	3	1080	2517	2334	183
	12:00 PM	2	0	0	0	2	1	1309	59	1	1370	123	0	84	1	208	108	1118	1	3	1230	2810	2600	210
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Totals		3	0	2	0	5	3	2488	130	3	2624	218	0	169	1	388	221	2082	1	6	2310	5327	4934	393

Graphical Summary of Hourly Volumes

Intersection Traffic Volume Report

15-Minute Motor Vehicle Data

Shady Lane and CTH Q

15-Minute Motor Vehicle Data

15-Minute Time Period Start Time		From North					From East CTH Q					From South Shady Lane					From West CTH Q					$\left\lvert\, \begin{aligned} & \text { 15-Min } \\ & \text { Totals } \end{aligned}\right.$	Hourly Sum	PHF
		Shady Lane																						
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total			
	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
.	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
\square	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
\square	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Σ	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
4	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
8	11:00 AM	0	0	1	0	1	1	274	18	0	293	16	0	21	0	37	33	231	0	1	265	596	2517	0.92
-	11:15 AM	0	0	1	0	1	0	275	16	1	292	19	0	23	0	42	25	221	0	1	247	582	2606	0.95
2	11:30 AM	1	0	0	0	1	0	300	21	0	321	30	0	21	0	51	24	255	0	0	279	652	2758	0.94
辰	11:45 AM	0	0	0	0	0	1	330	16	1	348	30	0	20	0	50	31	257	0	1	289	687	2766	0.94
Q	12:00 PM	0	0	0	0	0	0	296	19	1	316	36	0	16	0	52	32	285	0	0	317	685	2810	0.96
$\overrightarrow{0}$	12:15 PM	0	0	0	0	0	0	345	11	0	356	31	0	18	1	50	28	300	0	0	328	734		
\%	12:30 PM	0	0	0	0	0	1	306	13	0	320	27	0	25	0	52	27	259	0	2	288	660		
	12:45 PM	2	0	0	0	2	0	362	16	0	378	29	0	25	0	54	21	274	1	1	297	731		
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
O	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
$\stackrel{\square}{2}$	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
$\frac{3}{8}$	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Q	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Σ	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Tota		3	0	2	0	5	3	2488	130	3	2624	218	0	169	1	388	221	2082	1	6	2310	5327		

Peak Hour All Vehicle Volume Summary

Hourly Time Period Start Time	From North					From East					From South					From West					Total Hourly Volume	PHF
	Shady Lane					CTH Q					Shady Lane					CTH Q						
	Right	Thru	Left	$\mathrm{U}-\mathrm{Tn}$	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total		
AM 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MD 12:00 PM	2	0	0	0	2	1	1309	59	1	1370	123	0	84	1	208	108	1118	1	3	1230	2810	0.96
PM 4:00 PM	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	d	

Intersection Traffic Volume Report

15-Minute Automobile Data

Shady Lane and CTH Q

15-Minute Automobile Data

15-Minute Time Period Start Time		From North					From East					From South					From West					15-Min Totals
		Shady Lane					CTH Q					Shady Lane										
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
$\begin{aligned} & 0 \\ & 0 . \\ & 0 . \\ & 0 \\ & \frac{2}{0} \\ & 0 \\ & 2 \\ & \frac{2}{4} \end{aligned}$	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	0	0	1	0	1	1	267	18	0	286	16	0	21	0	37	33	229	0	1	263	587
	11:15 AM	0	0	1	0	1	0	271	16	1	288	19	0	23	0	42	25	219	0	1	245	576
	11:30 AM	1	0	0	0	1	0	297	20	0	317	30	0	21	0	51	24	252	0	0	276	645
	11:45 AM	0	0	0	0	0	1	325	16	1	343	30	0	20	0	50	31	256	0	1	288	681
	12:00 PM	0	0	0	0	0	0	292	19	1	312	36	0	16	0	52	32	282	0	0	314	678
	12:15 PM	0	0	0	0	0	0	340	11	0	351	31	0	18	1	50	28	297	0	0	325	726
	12:30 PM	0	0	0	0	0	1	303	13	0	317	27	0	25	0	52	27	255	0	2	284	653
	12:45 PM	2	0	0	0	2	0	361	16	0	377	29	0	25	0	54	21	270	1	1	293	726
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 PM	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Tota		3	0	2	0		-31	2456	129	3	2591	218	0	169	1	388	221	2060	1	6	2288	5272

Intersection Traffic Volume Report

15-Minute Single Unit (SU) Truck \& Bus Data

Shady Lane and CTH Q

15-Minute Single Unit (SU) Truck \& Bus Data

15-Minute Time Period Start Time		From North					From East					From South Shady Lane					From West CTH Q					15-Min Totals	Hourly Sum
		Shady Lane					CTH Q																
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total		
AM Peak Period	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	11:00 AM	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	0	2	0	0	2	9	27
	11:15 AM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	1	0	0	1	5	25
	11:30 AM	0	0	0	0	0	0	3	1	0	4	0	0	0	0	0	0	3	0	0	3	7	28
	11:45 AM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	1	0	0	1	6	28
	12:00 PM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	3	0	0	3	7	26
	12:15 PM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	3	0	0	3	8	
	12:30 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	4	0	0	4	7	
	12:45 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	3	0	0	3	4	
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tota		0	0	0	0	0	0	32	1	0	33	0	0	0	0	0	0	20	0	0	20	53	

Peak Hour Single Unit (SU) Truck \& Buses Volume Summary

Hourly Time Period Start Time	From North					From East					From South					From West					Total Hourly Volume
	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
AM 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MD 12:00 PM	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	0	13	0	0	13	26
PM 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Intersection Traffic Volume Report
Count Basics

15-Minute Semi-Truck Data

Shady Lane and CTH Q

15-Minute Semi-Truck Data

15-Minute Time Period Start Time		From North					From East					From South Shady Lane					From West CTH Q					15-Min Totals	Hourly Sum
		Shady Lane					CTH Q																
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total		
AM Peak Period	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
	11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tota		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	2	

Peak Hour Semi-Truck Volume Summary

Hourly Time Period Start Time						$\stackrel{\leftarrow}{\text { From East }}$										From West					Total Hourly Volume
	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
AM 8:00 AM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
MD 12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	1	0	0		1
PM 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0		0

Intersection Traffic Volume Report
Count Basics

15-Minute Heavy Vehicle Data

Shady Lane and CTH Q

15-Minute Heavy Vehicle Data

15-Minute Time Period Start Time		From North					From East					From South					From West					15-Min Totals
		Shady Lane					CTH Q					Shady Lane										
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
$\begin{aligned} & 0 \\ & 0 . \\ & 0 . \\ & 0 \\ & \frac{2}{0} \\ & 0 \\ & 2 \\ & \frac{2}{4} \end{aligned}$	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	0	2	0	0	2	9
	11:15 AM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	2	0	0	2	6
	11:30 AM	0	0	0	0	0	0	3	1	0	4	0	0	0	0	0	0	3	0	0	3	7
	11:45 AM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	1	0	0	1	6
	12:00 PM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	3	0	0	3	7
	12:15 PM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	3	0	0	3	8
	12:30 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	4	0	0	4	7
	12:45 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	5
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 PM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tota		0	0	0	0	0	0	32	1	0	33	0	0	0	0	0	0	22	0	0	22	55

Hourly
Sum
Sum

15-Minute Heavy Vehicle Percentages

Shady Lane and CTH Q
15-Minute Heavy Vehicle Percentages

15-Minute Time Period Start Time		From North					From East					From South										Total Heavy Vehicle Percent
		Shady Lane					CTH Q					Shady Lane					CTH Q					
		Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
	6:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
	6:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	9:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	11:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.8	1.5
	11:15 AM	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.8	1.0
	11:30 AM	0.0	0.0	0.0	0.0	0.0	0.0	1.0	4.8	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	1.1	1.1
	11:45 AM	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.3	0.9
	12:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.9	1.0
	12:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.9	1.1
	12:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	1.4	1.1
	12:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	1.3	0.7
	1:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0	0.0
尤	2:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	2:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2:30 PM	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	2:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	3:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3:15 PM	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
	3:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	3:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0
	4:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	4:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0	0.0
	5:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	5:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	5:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0
	5:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0
	6:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.	0.0
	7:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8:30 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0
	8:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:15 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0
	9:3 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9:45 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total		0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.8	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	1.0	1.0

Peak Hour Heavy Vehicle Percentages Summary

Hourly Time Period Start Time	From North					From East										From West					Hourly Heavy Vehicle Percent
	Shady Lane					CTH Q					Shady Lane					CTH Q					
	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	Right	Thru	Left	U-Tn	Total	
AM 8:00 AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MD 12:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	1.1	1.0
PM 4:00 PM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

15-Minute Pedestrian and Bicyclist Data

Shady Lane and CTH Q

15-Minute Pedestrian and Bicyclist Data

15-Minute Time Period Start Time		Crossing North Approach			Crossing East Approach			Crossing South Approach			CrossingWest Approach			15-Min Totals
		Shady Lane			CTH Q			Shady Lane			CTH Q			
		Pedestrian	Bicyclist	Total										
	6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:00 AlV	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:30 AM	1	0	1	0	0	0	0	0	0	0	0	0	1
	11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:00 PM	0	0	0	0	0	0	1	0	1	0	0	0	1
	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:30 PM	0	0	0	0	0	0	1	0	1	0	0	0	1
	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Peak Period	2:00 PIVI	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
	9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
Tota		1	0	1	0	0	0	2	0	2	0	0	0	3

Special Pedestrians

Pedestrian Type	None	1 or 2	A Few	Several	Many	Unknown
Pre-school Children	x					
Elementry School Age Children	x					
Visually Impaired (white cane/helper dog)	x					
Elderly/Disabled (except wheelchairs)	x					
Wheelchairs/Electric Scooters	x					
Other (None)	x					

APPENDIX A

WisDOT AADT Hourly Traffic Counts

Location	CTH Q EAST OF STH 175 APPLETON AVE MENOMONEE FALLS	Segment ID
Site \#	671156	Seasonal Factor Group 2
Region	SE	Daily Factor Group 2
County	WAUKESHA	Axle Factor Group 5
Funct. Class	U Principal Arterial - Other	Growth Factor Group

Hour	Mon-Thurs Average			Mon-Fri Average			7 Day Average			Estimated Annual Ave		
	Pos Dir	Neg Dir	Total									
00:00-00:59	76	54	129				-			64	45	110
01:00-01:59	41	41	82							35	35	70
02:00-02:59	34	30	64							29	25	54
03:00-03:59	40	23	62							33	19	53
04:00-04:59	78	59	137							66	50	116
05:00-05:59	280	125	405							237	106	343
06:00-06:59	575	299	874							487	254	741
07:00-07:59	801	449	1,250							679	381	1,060
08:00-08:59	612	512	1,123							518	433	952
09:00-09:59	608	637	1,245							515	540	1,055
10:00-10:59	665	703	1,368				-			564	596	1,160
11:00-11:59	782	859	1,640							662	727	1,390
12:00-12:59	959	1,008	1,967							812	854	1,667
13:00-13:59	609	716	1,325							519	610	1,128
14:00-14:59	793	977	1,770							689	849	1,538
15:00-15:59	814	1,113	1,927							708	967	1,675
16:00-16:59	938	1,330	2,268				-			815	1,156	1,970
17:00-17:59	879	1,274	2,153							763	1,106	1,870
18:00-18:59	830	924	1,754							721	803	1,524
19:00-19:59	684	772	1,456				-			595	671	1,265
20:00-20:59	552	539	1,091							479	469	948
21:00-21:59	373	336	709							324	292	616
22:00-22:59	215	190	405							187	165	352
23:00-23:59	119	106	225				-			103	92	195
Daily Total	12,352	13,072	25,424				-			10,606	11,244	21,85

AM Peak	801	637	1,250	-			-			679	540	1,060
Hour	07:00	09:00	07:00	-			-			07:00	09:00	07:00
MD Peak	959	1,008	1,967	-			-			812	4	1,667
Hour	12:00	12:00	12:00	-			-			12:00	12:00	12:00
PM Peak	938	1,330	2,268	-			-			815	1,15	1,970
Hour	:00	16:00	6:00	-			-			16:0	16:1010	16:0
Daily Peak	95	1,330	,268	-			-			815	1,15	1,970
Hour	12:00	16:00	16	-			-			6:00	16:0	16:0
\% of Total	7.8\%	10.2\%	8.9\%	-			-			7.7\%	10.3\%	9.0\%
Daily Ave	515	545	1,059				-			442	469	910

APPENDIX A

ISD Calculations

ISD CALCULATIONS

Performed by:	MPMay
Location:	Date: $\quad \frac{12 / 10 / 2020}{\text { County Line Road \& Shady Lane/Drivewayl }}$

Mainline Name: County Line Road
Sidestreet Name: Driveway (FROM NORTH

Left/Thru Out Allowed (1=yes, $0=$ no):	1	
T-Intersection (1=yes, 0=no):	0	
Design Speed from Left:	40 mph	58.67 fps
Design Speed from Right:	40 mph	58.67 fps
Median Width:	28 feet	2.33 equivalent lanes
Near Side Right:	1 lane or taper	
Near Side Thru:	2 lane(s)	
Far Side Thru:	2 lane(s)	
Far Side Right:	1 lane or taper	

	P	SU	WB	
Design Vehicles:	X	X		(place an "X")

CASE B1: Left Turn from Minor Street or Median (driver looking right)

	MINIMUM ISD				DESIRABLE ISD			
	P	SU	WB		P	SU	WB	
Base Time Gap, sec:	7.5	9.5	11.5		10.0	12.0	13.0	
Additional Time Gap, sec:	0.0	3.1	3.1		0.0	3.1	3.1	
Total Time Gap, sec:	7.5	12.6	14.6		10.0	15.1	16.1	
Case B1 ISD, feet:	440.0	739.2	856.5		586.7	885.9	944.5	
Rounded Case B1 ISD, feet:	445	740	860	590	890	945		

CASE B2: Right Turn from Minor Street (driver looking left)

	MINIMUM ISD			DESIRABLE ISD		
	P	SU	WB	P	SU	WB
Base Time Gap, sec:	6.5	8.5	10.5	8.0	10.0	12.0
Additional Time Gap, sec:	0.5	0.7	0.7	0.5	0.7	0.7
Total Time Gap, sec:	7.0	9.2	11.2	8.5	10.7	12.7
Case B2 ISD, feet:	410.7	539.7	657.1	498.7	627.7	745.1
Rounded Case B2 ISD, feet:	415	540	660	500	630	750

CASE B3: Crossing from Minor Street (driver looking left)

	MINIMUM ISD				DESIRABLE ISD		
	P	SU	WB	P	SU	WB	
Base Time Gap, sec:	6.5	8.5	10.5	7.0	10.0	13.0	
Additional Time Gap, sec:	0.5	0.7	0.7	0.5	0.7	0.7	
Total Time Gap, sec:	7.0	9.2	11.2	7.5	10.7	13.7	
Case B3 ISD, feet:	410.7	539.7	657.1	440.0	627.7	803.7	
Rounded Case B3 ISD, feet:	415	540	660	445	630	805	

CASE B3: Crossing from Minor Street or Median (driver looking right)

	MINIMUM ISD				DESIRABLE ISD		
	P	SU	WB		P	SU	WB
Base Time Gap, sec:	6.5	8.5	10.5		7.0	10.0	13.0
Additional Time Gap, sec:	0.5	4.5	4.5		0.5	4.5	4.5
Total Time Gap, sec:	7.0	13.0	15.0		7.5	14.5	17.5
Case B3 ISD, feet:	410.7	762.7	880.0		440.0	850.7	1026.7
Rounded Case B3 ISD, feet:	415	765	885		445	855	1030

CASE F: Left from Major to Minor (driver looking to left of access)

	MINIMUM ISD			DESIRABLE ISD		
	P	SU	WB	P	SU	WB
Base Time Gap, sec:	5.5	6.5	7.5	8.0	8.0	8.0
Additional Time Gap, sec:	1.0	1.4	1.4	1.0	1.4	1.4
Total Time Gap, sec:	6.5	7.9	8.9	9.0	9.4	9.4
Case F ISD, feet:	381.3	463.5	522.1	528.0	551.5	551.5
Rounded Case F ISD, feet:	385	465	525	530	555	555

CONTROLLING DISTANCES:

MINIMUM ISD				DESIRABLE ISD			
To Left of Access:	\mathbf{P}	$\mathbf{4 1 5}$	SU	WB	\mathbf{P}	SU	WB
To Right of Access:	445	$\mathbf{5 4 0}$	660		500	630	805
Left-Turn from Mainline:	385	465	885		590	890	1030

NOTES: A median width of 25^{\prime} or more necessary for two-stage of 19' P-Vehicle A median width of 36^{\prime} or more necessary for two-stage of 30^{\prime} SU-Vehicle A median width of 71' or more necessary for two-stage of 65' WB-Vehicle

ISD CALCULATIONS

Performed by:	MPMay
Location:	Date: $\quad \frac{12 / 10 / 2020}{\text { County Line Road \& Shady Lane/Drivewayl }}$

Germantown, WI

SPECIAL INSTRUCTIONS:

Development Driveway is on the north side of County Lane at Shady Lane (North to bottom of page) P-veh eye: $3.5-\mathrm{ft}$; SU/WB-veh eye $=7.6-\mathrm{ft}$; Object $=3.5-\mathrm{ft}$ Check *minimum* distances.
If minimum distance not met, record where distance is met by holding eye location constant.
Also, if not met, take photo to minimum distance and indicate how close eye must be to south edge of sidewalk. Lastly, please check the SSD of westbound traffic approaching the Development Driveway (305-feet)

APPENDIX B

YEAR 2020 EXISTING TRAFFIC PEAK HOUR ANALYSIS OUTPUTS

Lanes, Volumes, Timings
150: Shady Lane/Development Drwy \& County Line Road
12/10/2020

	\Rightarrow		\geqslant	\checkmark				\uparrow	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个	F	\%	¢ \uparrow	F		\uparrow	7		\dagger	
Traffic Volume (vph)	5	920	60	35	1085	5	55	1	65	5	1	5
Future Volume (vph)	5	920	60	35	1085	5	55	1	65	5	1	5
Ideal How (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	00
Lane Width (t)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (t)	125		105	190		0	0		o	\bigcirc		0
Storage Lanes	1		1	1		1	0		1	0		0
Taper Length (t)	75			75			75			75		
Lane Uiil. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit			0.850			0.850			0.850		0.939	
Protected	0.950			50				53			0.97	
Satd. Fow (prot)	1736	3471	1553	1752	3505	1568	0	1793	1599	0	154	0
Ft Permitted	0.950			0.950				0.953			0.978	
Satd. Fow (perm)	1736	3471	1553	1752	3505	1568	0	1793	1599	0	1544	0
Link Speed (mph)		35			35			25			25	
Link Distance (f)		448			498			191			162	
Travel Time (s)		8.7			9.7			5.2			4.4	
Confl. Peds. (\#\#r)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heay Vehicles (\%)	4\%	4\%	4\%	3\%	3\%	3\%	1\%	1\%	1\%	13\%	13\%	13\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%			०\%			0\%			\%\%	
Adj. Fow (Vph)	5	989	65	38	1167	5	59	1	70	5	1	5
Shared Lane Trafic (\%)												
Lane Group Fow (yph)	5	989	65	38	1167	5	0	60	70	0	11	0
Sign Control		Free			Free			Stop			Stop	

Itersection Summary
 Control Type: Unsignalized

HCM 6th TWSC
150: Shady Lane/Development Drwy \& County Line Road
12/10/2020

TAD
Z:ISharedMI2610- Taco Bell Germantonn|Analysis11. 2020 Exist - Upstream SignalsIUkday MD Peak.syn

Lanes, Volumes, Timings
150: Shady Lane/Development Drwy \& County Line Road
12/10/2020

	\Rightarrow		\geqslant	\checkmark		4		\uparrow	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个	F	${ }^{7}$	¢ \uparrow	F		\uparrow	7		\dagger	
Traffic Volume (vph)	5	815	55	60	1335	1	60	1	85	5	5	5
Future Volume (vph)	5	815	55	60	1335	1	60	1	85	5	5	5
Ideal How (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	00
Lane Width (t)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (t)	125		105	190		0	0		o	\bigcirc		0
Storage Lanes	1		1	1		1	0		1	0		0
Taper Length (t)	75			75			75			75		
Lane Uiil. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit			0.850			0.850			0.850		0.955	
Protected	0.950			0.950				0.953			0.98	
Satd. Fow (prot)	1787	3574	1599	1770	3539	1583	0	1793	1599	0	1768	0
Ft Permitted	0.950			0.950				0.953			0.984	
Satd. Fow (perm)	1787	3574	1599	1770	3539	1583	0	1793	1599	0	1768	0
Link Speed (mph)		35			35			25			25	
Link Distance (f)		448			498			191			162	
Travel Time (s)		8.7			9.7			5.2			4.4	
Confl. Peds. (\#\#r)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heay Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	1\%	1\%	1\%	1\%	1\%	1\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%			०\%			0\%			\%\%	
Adj. Fow (Vph)	5	840	57	62	1376	1	62	1	88	5	5	5
Shared Lane Traffic (\%)												
Lane Group Fow (yph)	5	840	57	62	1376	1	0	63	88	0	15	0
Sign Control		Free			Free			Stop			Stop	

Itersection Summary
 Control Type: Unsignalized

HCM 6th TWSC
150: Shady Lane/Development Drwy \& County Line Road
12/10/2020

TAD
Z:ISharedMI2610- Taco Bell Germantonn|Analysis11. 2020 Exist - Upstream SignalsIUkday PM Peak.syn

Synchro 11 Report

Lanes, Volumes, Timings
150: Shady Lane/Development Drwy \& County Line Road
12/22/2020

	\Rightarrow		\rangle	\checkmark	\leftarrow		4	\uparrow	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	¢ \uparrow	$\overline{7}$	${ }_{1}$	¢ \uparrow	7		\uparrow	F		¢	
Traffic Volume (vph)	5	1210	120	65	1415	1	90	1	135	1	1	
Future Volume (vph)	5	1210	120	65	1415	1	90	1	135	1	1	
Ideal How (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Midth (t)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (t)	125		105	190		0	0		0	0		
Storage Lanes	1		1	1		1	0		1	0		
Taper Length (t)	75			75			75			75		
Lane Uili. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit			0.850			0.850			0.850		0.904	
Ft Protected	0.950			0.950				0.953			0.993	
Satd. Fow (prot)	1787	3574	1599	1787	3574	1599	0	1793	1599	0	1689	
Ft Permitted	0.950			0.950				0.953			0.993	
Satd. Fow (perm)	1787	3574	1599	1787	3574	1599	0	1793	1599	0	1689	
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		448			498			191			162	
Travel Time (s)		8.7			9.7			5.2			4.4	
Confl. Peds. (\#hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heay Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	o	0	0	
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%			0\%			०\%			0\%	
Adj. How(yph)	5	1260	125	68	1474	1	94	1	141	1	1	
Shared Lane Traffic (\%)												
Lane Group Fow (yph)	5	1260	125	68	1474	1	0	95	141	0	7	
Sign Control		Free			Free			Stop			Stop	

tersection Summary

Control Type: Unsignalized

HCM 6th TWSC
150: Shady Lane/Development Drwy \& County Line Road
12/22/2020

Z:ISharedIMI2610-Taco Bell GermantowniAnalysis11. 2020 Exist - Upstream SignalsISAT MID Peak.syn

APPENDIX C

YEAR 2021 BUILD TRAFFIC WITH TACO BELL PEAK HOUR ANALYSIS OUTPUTS

Lanes, Volumes, Timings
150: Shady Lane/Development Drwy \& County Line Road
12/22/2020

	\rangle	\rightarrow		\checkmark	\leftarrow		4	\uparrow				\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	¢ \uparrow	$\overline{7}$	\%	个4	F'		\uparrow	F'		¢	
Traffic Volume (vph)	20	910	60	35	1070	25	55	1	65	20	1	25
Future Volume (vph)	20	910	60	35	1070	25	55	1	65	20	1	25
Ideal How (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane WMdth (t)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			\%\%			0\%			0\%	
Storage Length (t)	125		105	190		0	0		0	-		
Storage Lanes	1		1	1		1	0		1	o		
Taper Length (t)	75			75			75			75		
Lane Uili. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit			0.850			0.850			0.850		0.927	
Ft Protected	0.950			0.950				0.953			0.978	
Satd. Fow (prot)	1736	3471	1553	1752	3505	1568	0	1793	1599	0	1524	
Ft Permited	0.950			0.950				0.953			0.978	
Satd. Fow(perm)	1736	3471	1553	1752	3505	1568	0	1793	1599	0	1524	
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		448			498			191			162	
Travel Time (s)		8.7			9.7			5.2			4.4	
Confl. Peds. (\#hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heay Vehicles (\%)	4\%	4\%	4\%	3\%	3\%	3\%	1\%	1\%	1\%	13\%	13\%	13\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			\%\%	
Adj. How(vph)	22	978	65	38	1151	27	59	1	70	22	1	27
Shared Lane Traffic (\%)												
Lane Group Fow (vph)	22	978	65	38	1151	27	0	60	70	0	50	
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:Control Type: Unsignalized												

Z:ISharedMI2610 - Taco Bell Germantown|Analysis12. 2021 Build - Upstream SignalsIWkday MD Peak.syn

HCM 6th TWSC
150: Shady Lane/Development Drwy \& County Line Road
12/22/2020

Z:ISharedWI2610 - Taco Bell Germantonn|Analysis12. 2021 Build - Upstream SignalsIWkday MID Peak.syn

Lanes, Volumes, Timings
150: Shady Lane/Development Drwy \& County Line Road
12/22/2020

	\Rightarrow			7	\leftarrow		4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	${ }^{7}$	¢ \uparrow	7	\%	¢ \uparrow	F		\uparrow	F		¢	
Traffic Volume (vph)	10	810	55	60	1325	20	60	1	85	15	1	15
Future Volume (vph)	10	810	55	60	1325	20	60	1	85	15	1	15
Ideal Fow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Wldth (t)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (t)	125		105	190		o	0		o	\bigcirc		
Storage Lanes	1		1	1		1	0		1	0		
Taper Length (t)	75			75			75			75		
Lane Uiil. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit			0.850			0.850			0.850		0.935	
Ft Protected	0.950			0.950				0.953			0.976	
Satd. Fow (prot)	1787	3574	1599	1770	3539	1583	0	1793	1599	0	1717	
Ft Permitted	0.950			0.950				0.953			0.976	
Satd. Fow (perm)	1787	3574	1599	1770	3539	1583	0	1793	1599	0	1717	
Link Speed (mph)		35			35			25			25	
Link Distance (t)		448			498			191			162	
$\begin{array}{lllll}\text { Travel Time (s) } & 8.7 & 9.7 & 5.2 \\ \text { Confl. Peds. (\#hr) } & & \\ \text { Col }\end{array}$												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heany Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	1\%	1\%	1\%	1\%	1\%	1\%
Bus Blockages (\#hr)	o	-	o	0	0	0	0	0	o	o	0	
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			\%\%	
Adj. How (Yph)	10	835	57	62	1366	21	62	1	88	15	1	15
Shared Lane Traffic (\%)												
Lane Group How (yph)	10	835	57	62	1366	21	0	63	88	0	31	
Sign Control		Free			Free			Stop			Stop	

tersection Summary
 Control Type: Unsignalized

HCM 6th TWSC
150: Shady Lane/Development Drwy \& County Line Road
12/22/2020

TAD
2. SharedWi2610- Taco Bell Germantonn|Analysis12. 2021 Build - Upstream SignalsilWkday PM Peak.syn

Synchro 11 Report

Lanes，Volumes，Timings
150：Shady Lane／Development Drwy \＆County Line Road
12／22／2020

	4			7	\leftarrow		4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个个	F	\％	个个	F		\uparrow	F		¢	
Traffic Volume（vph）	25	1200	120	65	1400	30	90	1	135	25	1	25
Future Volume（vph）	25	1200	120	65	1400	30	90	1	135	25	1	25
Ideal Fow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Wldth（t）	12	12	12	12	12	12	12	12	12	12	12	12
Grade（\％）		0\％			0\％			0\％			0\％	
Storage Length（t）	125		105	190		o	0		o	o		
Storage Lanes	1		1	1		1	0		1	0		
Taper Length（t）	75			75			75			75		
Lane Uiil．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit			0.850			0.850			0.850		0.934	
Ft Protected	0.950			0.950				0.953			0.976	
Satd．Fow（prot）	1787	3574	1599	1787	3574	1599	0	1793	1599	0	1715	
Ft Permitted	0.950			0.950				0.953			0.976	
Satd．Fow（perm）	1787	3574	1599	1787	3574	1599	0	1793	1599	0	1715	
Link Speed（mph）		35			35			25			25	
Link Distance（t）		448			498			191			162	
Travel Time（s）		8.7			9.7			5.2			4.4	
Confl．Peds．（\＃\＃hr）												
Confl．Bikes（\＃hr）												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％
Heany Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	1\％	1\％	1\％	1\％	1\％
Bus Blockages（\＃hr）	o	o	o	0	0	0	0	0	o	0	0	
Parking（\＃\＃hr）												
Mid－Block Traffic（\％）		0\％			0\％			0\％			\％\％	
Adj． How （Yph）	26	1250	125	68	1458	31	94	1	141	26	1	26
Shared Lane Traffic（\％）												
Lane Group How（wph）	26	1250	125	68	1458	31	0	95	141	0	53	
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type：	her											
Control Type：Unsignalized												

Z：ISharedIMI2610－Taco Bell Germantown｜Analysis12． 2021 Build－Upstream SignaslsAT MID Peak．syn

HCM 6th TWSC
150：Shady Lane／Development Drwy \＆County Line Road
12／22／2020

ISharedMMI2610－Taco Bell GermantowniAnalysis12． 2021 Build－Upstream SignalsISAT MD Peak．syn

