Date: December 4, 2020

To: Town of Mukwonago Plan Commission and Town Board

From: Tim Schwecke, AICP, Town Planner

Subject: Residential allotment for a preliminary plat for 18 residential lots located on east side of

Sprague Road (EGLT1826998004); Camtec Inc; Diane Zakrzewski, agent

Application: 2020-20; https://s.zoninghub.com/7FNYY79962

Meeting: December 7, 2020 Plan Commission and Town Board meeting

The Plan Commission and Town Board evaluated the proposed subdivision at their meeting on October 5, 2020 and gave a score of 7.3; a minimum of 10 points is required for approval. The matter was tabled so the Town could evaluate the criteria.

The intent is to go through the scoring exercise again at this meeting. Plan Commission and Town Board members are encouraged to ask question regarding the criteria and how they may apply in this instance.

Camtec Inc (Diane Zakrzewski, agent) has submitted additional materials for your consideration. Please also find attached a blank worksheet for your use, which includes the planner's and engineer's score.

A. Residential development permit review

A minimum of 10 points is required for approval.

Motion by Town Board and Plan Commission

The proposed subdivision scores ___ points based on a joint evaluation by the Town Board and Plan Commission.

B. Residential allotment

The petitioner is requesting an allotment of 8 residential development permits for the first phase (2021) and 10 in the second phase (2022). (to be verified)

Potential motion

Approve the allocation of 8 residential development permits provided the subdivider submits a preliminary plat to the Town of Eagle and obtains approval of the same within 12 months of this date

Attachments

- 1. Application materials
- 2. Blank evaluation worksheet

Subdivision name: Camtec Inc

Review date: December 7, 2020

			Score									
Cri	teria	Don M.	Dan W.	Jan S.	Steve M.	Chris M.	Jacki L.	Irene R.	John M.	Bob K.	Total (Across)	Average Score
1.	Preservation of environmental corridors, isolated natural areas, and natural topography											
2.	Surface water drainage											
3.	Overall density of the development											
4.	Preservation of agricultural lands and the rural character											
5.	Traffic circulation and capacity of major streets											
6.	Soils consideration for roads and basement construction											
7.	Lot size variation											
8.	Buffers											
9.	Future public costs and benefits											
Tot	Total (Average Score)											

Town Planner Score	Town Engineer Score
4	4
3	2
2	2
-1	-1
2	0
-1	2
1	0
1	1
0	0
11	10

Note: A score of 10 or more is needed for approval

Dear Tim,

Please present to the Town Board and Planning Commission at the next town meeting on November 5, 2020, our response to the 10/5/20 allotment votes.

We state as follows:

Re: Items #2 and #6 (chart attached)

Several weeks ago we delivered to the town clerk written detailed <u>soil borings</u> and <u>test pits</u> reports by qualified professional soil testing firms.

At the time of the allotment voting, these reports were not in the hands of the voters, and therefore we ask that #2 "Surface Water Drainage" and #6 "Soils consideration for roads and basement construction" of the allotment application be reviewed and rescored, based on facts as listed in said reports. Facts cannot be denied that the land to be developed contains excellent soil to support the highest scoring for items #2 and #6.

Re: Town Planner Score and Town Engineer Score (chart attached)

The town planner and town engineer presented their professional opinions and gave scores of 11 and 10 respectively, which would allow development to proceed.

Camtec Inc. had submitted the allotment application along with the fees required for said allotment review by the planner and engineer. We accept their professional opinions and request that their scores be the criteria for allotment scoring, (with consideration to review and rescore items #2 and #3 based on the submitted soil reports.)

Re: Voters' scores (refer to chart)

The voting among the 9 members on 10/5/20 during the town meeting was done in haste. The scoring results show lack of continuity and agreement among the members.

Note that the scores of the Town Planner and the Town Engineer show a basic unity of opinion as reflected in the 11and10 scores.

Respectfully submitted, Sandy Campbell/Diane Zak

Royal Aire Estates

O	cto	her	5.	202	0
_	CLO	~~!	٠,		v

	Don	Dan	Jan	Steve	Chris	Jacki	Irene	John	Bob	Total	Average
1	4	3	3	4	3	3	3	4	3	30	3.33
 > 2	3	-3	3	2	2	0	2	2	0	11	1.22
3	2	0	2	2	2	1	2	2	0	13	1.44
4	1	-2	0	-1	-1	-1	-1	-1	-1	-7	-0.78
5	2	0	1	-1	1	1	2	1	0	7	0.78
→ 6	1	0	0	2	2	1	2	2	0	10	1.11
7	1	-2	0	0	1	0	1	1	0	2	0.22
8	1	-2	1	1	1	0	1	-1	0	2	0.22
9	0	0	0	-1	0	0	0	0	-1	-2	-0.22

#2 "Surface Water DRAINAge"

#6 "Soils consideration for ROADS AND basement construction"

7.32

SOIL BORINGS - ON EACH PARCE (SEE PRE (IMINARY PLAT)

		tment of Commerce and Buildings	ce SO	IL EVAL	LUATION F	REPORT		8	Page /	018
DIVISI	on or oarety	and buildings	in accordance with Co	omm 85, Wi	s. Adm. Code	[o i	71	· ————————————————————————————————————		
Atta	ch complet	e site plan on pap	er not less than 8 1/2 x 11 incl	hes in size.	Plan must	County	Way	Kesh	a	
per	cent slope,	scale or dimension	l and horizontal reference poir ns, north arrow, and location a	nd distance	to nearest road.	Parcel I.D).	. 4		
		Please	print all information.	·		Reviewed	by		Di	ate
		ation you provide ma	y be used for secondary purposes	-		all extraording to the control of				
CI	y Owner	CZI	Plaza LLC		Govt. Lot 5 (J 1/4/2 W	1/4 s 25		NR/	7 E (or) 翌
W.		Mailing Address 5,4860 (OMMERCIA DI	$\dot{\gamma}$.	Lot# Block	Propos	-w our	"of D	ivisio	N)
A Lat	Paic		Phone Number		City	Village 🔀	Town		ist Road aque	DI
19011	1// 1				nas		· · · · · · · · · · · · · · · · · · ·			
, `	v Construcți		sidential / Number of bedroom	,	Code derive	d design flow	rate			GPD
Repl Parent r	acement	∐ Pu	iblic or commercial - Describe:		lood Plain eleva	tion if applicab	le	.		ft
	comments					потт парриово				***************************************
and rec	ommendati	ons:		*				_20		
						·				
2	Boring #	☐ Boring ☑ Pit Grọu	and surface elev, 886,5	ft, I	Depth to limiting	factor 11C	2 In.		Coll Appl	lication Rate
Horizon	Depth	Dominant Color		Texture	Structure	Consistence	Boundary	Roots		PD/ff
	ln.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			. 7	*Eff#1	*Eff#2
1	0.10	10/13/2	None	5/.	2-4-5bK	Mfr	a5	25	0.6	1.0
2	10-23	7.54-4/4	"	50	2-M-56K	Mfc	(w	14	0.4	0.6
3	29410	101-6/4	11	Vars.	0-59	M	<u> </u>	_	0.7	1.6
		. / /	**							
	 				,					
						· · · · · · · · · · · · · · · · · · ·		*		L
2 1	Boring #	Bering Groun	nd surface elev, <u>887, 1</u>	ft l	Depth to limiting	factor 12	O in.			
	<u> </u>		THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Texture	Structure	Consistence	Boundary	Roots		cation Rate
Horizon	Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.	Consistence	Doundary	1,0013	*Eff#1	*Eff#2
T.	0-12	10/-3/2	None	1	2-f-5bk	MF-	25	2+	0.6	0.8
Ź	12-21	10/04/4	11	cl	2 Mishk	Mfr	cw	IVF	0.4	0.6
3	39-120	10/106/1	11	vars	0-50	MI	-	_	0.7	1,6
<u> </u>	19-60	10 41 -77		ت ارت	3				19.00	
		,								
										
				·						
			≤ 220 mg/L and TSS >30 ≤ 15		A * Efflu	ient#2 = BOD	?≤ 30 mg/L		≤ 30 mg/L Number	
CST Na	me (Please	Print) ALDE. SA		Signature	Non.	anni		21	16	
Address		V. 33749 HW			Date Eval	uation Conduct	ted	Tele	phone Nun	nber
			, WI 53153		12/	26/07	4	262-3	92-2	143

		A -	÷							
Property	Owner_C	Circle C	-Z Plaza	Parcel ID#				Page	2 of	8
4	Boring #	Boring	ound surface elev. 888.			11	2			
		Pit Gro	ound surface elev.	_ ft.	Depth to limiting	g factor 114	in.		Soil Apr	olication Rate
Horizon	n Depth	Dominant Cold		Texture	Structure	Consistenc	e Boundar	Roots		PD/ff
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.				*Eff#1	*Eff#2
/	0-10	10403/2	None	1	2-F56K	Mfr	a5	24	0.6	0.8
2	10-22	10/-4/4	11	cl	2-M-56K	Men	CW	luf	0.4	0.6
3	22:46	10456/4	и	915	0-54	MI	CW		0.2	1,6
4	46-84	10/1-6/4	. 4	5	0-59	ml.	CW	-	0.7	1,6
5	84-112	101-6/4	11	V4r5	0-50	· M/		_	0.7	1.6
		1 11 11 11 11 11								
5	Boring #	Boring	und surface elev. 888.4				2		A. C.	
		Pit. Gro	und surface elev. <u>D DO 1 1</u>	_ ft.	Depth to limitin	g factor/_	<u> </u>			lication Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	Roots	and the second second second	PD/ff
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.		<u> </u>		*Eff#1	*Eff#2
1	0-12	101-3/2.	None	1 Lever 1	2.f-5bK	Mfr	25	24	0.6	0.8
2	12-25	10/-1/4	p	cl	2-MYBK	MF	CW	IVF	0.4	0.6
3	25-113	104-6/4	. и .	var 5	0-59	M		_	017	1.6
			* *				7- 1111			
स्टार स्टब्स	!		ir a a a a war war				* , . .			
B	oring#	Boring	und surface elev. 889.1	4	Depth to limiting	factor: 12	0 in			
Ψ	Ų	Pit Grou	unu surrace elev. DO 1.1	. 14					Soil ^oplic	cation Raie
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	Roóts	-	D/ff
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.				*Eff#1	*Eff#2
1	0-13	10V-3/2	None	6	2-f-56K	Mfr	a.5	2f	0.6	0.8
2	13-32	101/4/4	10	cl	2-M-56K	Mfr	CW	1vf	0.4	0.6
	32-44	104-6/4	u	5	0-59	M	CW		0.2	1.6
4			il .	V915	0-59	MI	_		0.7	1.6
-	11100	1111		J.	9					ALIZANIA II.
		-								
			,							
i			8						- 1	

The Department of Commerce is an equal opportunity service provider and employer. If you need assistance to access services or need material in an alternate format, please contact the department at 608-266-3151 or TTY 608-264-8777.

[•] Effluent #1 = BOD_s > 30 \leq 220 mg/L and TSS >30 \leq 150 mg/L
• Effluent #2 = BOD_s \leq 30 mg/L and TSS \leq 30 mg/L

SOIL EVALUATION REPORT Page 3 of 8 Wisconsin Department of Commerce Division of Safety and Buildings in accordance with Comm 85, Wis. Adm. Code County Attach complete site plan on paper not less than 8 1/2 x 11 inches in size. Plan must include, but not limited to: vertical and horizontal reference point (BM), direction and Parcel I.D. percent slope, scale or dimensions, north arrow, and location and distance to nearest road. Please print all information. Reviewed by Date Personal information you provide may be used for secondary purposes (Privacy Law, s. 15.04 (1) (m)). Property Owner Property Location Govt. Lot 500 Lot# City ☐ Yillage Nearest Road Use: X Residential / Number of bedrooms Code derived design flow rate GPD Public or commercial - Describe: Replacement Flood Plain elevation if applicable Parent material General comments and recommendations: Boring Boring # Ground surface elev, 88 2 Pit Soil Application Rate Consistence GPD/ff Texture Structure Boundary Roots Dominant Color Redox Description Horizon Depth *Eff#1 *Eff#2 Qu. Sz. Cont. Color Munsell 11 11 Boring Ground surface elev, 885.9 Depth to limiting factor <u>113</u> Boring # X Pit Soil Application Rate GPD/ff Texture Structure Consistence Boundary Roots Dominant Color Redox Description Depth Horizon *Eff#1 *Eff#2 Gr. Sz. Sh Qu. Sz. Cont, Color Munsell

 Effluent #1 = BOD₅ > 30 ≤ 220 mg/L and TSS >30 	≤ 150 mg/L	* Effluept) #2 = BOD, ≤ 30 m	ng/L and TSS ≤ 30 mg/L
CST Name (Please Print) DONALD E. SAMUELS	Signature	UM. Hami	CST Number
Address S.55 W. 33749 HWY. ZZ NORTH PRAIRIE, WI 53153		Date Evaluation Conducted 12/26/07	Telephone Number 262-342-2743
			000 0220 /002

Prope	Boring #	Boring	-Z. Plaza ound surface elev. 885, 4		#Depth to limit	Hom for the A	lio	(P	e <u>4</u>	or 8
Horiz	on Depti	h Dominant Cold				Consister			s	oplication Rate
1	0-11	104-3/2	Nove	1	2-f-5b	K Mfr	as	24	0.6	
3	20-11		1 11	Cl	24/50	Mfc		14	7	-
	20711	0 104-6/4		vgrs	0-59	17/			0.7	16
			1	-	· · · · · · · · ·		-	-	<u></u>	
		33 3 × 3 × 3	The state of the s	1 77 7		· · · · · ·	+		-	+
						-	 	-	-	
10 Horizon		Boring Pit Grou	und surface elev. 884.6	7	Depth to limiting				Soil App	lication Rate
	in.	Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistenc	e Boundar	y Roots	*Eff#1	PD/ff² *Eff#2
1	0-12	10/-3/2	Nove	iha.	2-f-56K	Mfr	25	2f	0.6	0.8
2		104-44	Л	cl	2-11-56K	Mfr	cw	luf	0.4	0.6
)	22-110	104-6/4	u	vgrs	0-59	MI			0.7	1,6
		, è,								
	+			-						
			· · · · · · · · · · · · · · · · · · ·							
\$1. j 100.8	.		o to be lifetory than		r . z		<u> </u>	Ŀ		
11 8	oring#	Boring Pit Groun	nd surface elev, 880, 9	ft. C	Pepth to limiting	factor 12	<i>O</i> in.		O-ll All	
Horizon	Depth in.	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	Roóts	GPI	cation Rate
1	0-14	10103/	Qu. Sz. Cont. Color	h	Gr. Sz. Sh.	116	1.0	20	*Eff#1	
2	14.33	10/4/4	11	7	2-MAGIN	MTA	as cw	AT.	016	0.8
3	33-120	104-6/4	V	190/5	2-54	MI	_	14		0.6
			The Contraction Contract	<i>y</i> 12	9				21.0	114
			9	• •						

* Effluent #1 = BOD, > 30 ≤ 220 mg/L and TSS >30 ≤ 150 mg/L

The Department of Commerce is an equal opportunity service provider and employer. If you need assistance to access services or need material in an alternate format, please contact the department at 608-266-3151 or TTY 608-264-8777.

^{*} Effluent #2 = BOD, \leq 30 mg/L and TSS \leq 30 mg/L

Wisconsin Department of Comme	erce
Division of Safety and Buildings	

NORTH PRAIRIE, WI 53153

		_	. /	7
Page	5	of	8	

SOIL EVALUATION REPORT in accordance with Comm 85, Wis. Adm. Code County Attach complete site plan on paper not less than 8 1/2 x 11 inches in size. Plan must include, but not limited to: vertical and horizontal reference point (BM), direction and percent slope, scale or dimensions, north arrow, and location and distance to nearest road. Parcel I.D. Please print all information. Reviewed by Date Personal information you provide may be used for secondary purposes (Privacy Law, s. 15.04 (1) (m)). Property Owne Property Location Govt. Lot 5 W Block # City New Construction Use: Residential / Number of bedrooms GPD ☐ Public or commercial - Describe: Replacement Flood Plain elevation if applicable Parent material General comments and recommendations: Boring Ground surface elev, 880, 7 ft. Boring # Depth to limiting factor 132 X Pit Soil Application Rate Dominant Color Texture Structure GPD/# Redox Description Consistence Boundary Roots Horizon Depth *Eff#1 *Eff#2 Qu. Sz. Cont. Color Munsell Jone. " 11 Boring Boring # Ground surface elev, 890,2 Depth to limiting factor _ X Pit Soil Application Rate Structure Consistence GPD/ff Redox Description Texture Boundary Roots Dominant Color Horizon Depth Gr. Sz. Sh *Ef#1 *Eff#2 Qu. Sz. Cont, Color Munsell * Effluer(7#2 = BOD, ≤ 30 mg/L and TSS ≤ 30 mg/L • Effluent #1 = BOD, > $30 \le 220$ mg/L and TSS > $30 \le 150$ mg/L Signature CST Name (Please Print) DONALDE. SAMUEL Date Evaluation Conducted Address S.55 W. 33749 HWY. ZZ

Propert	ty Owner _(Circle	C-Z Plaza	Parcel ID	ш .	*		•		0
16	Boring #	Roring	round surface elev. 888-			ng factor 12	0	Page	6.	1 0
Horizo	on Depti	Dominant Co	lor Redox Description Qu. Sz. Cont. Color	Textu	THE R. P. LEWIS CO., LANSING, SHOW, SHOW, SHOW,	Consistence		y Roots		oplication Rate GPD/ff*
/	0-11	10 yr 3/	NoNe	L	2-f-56K	Mfr	125	24	0.6	0.8
1	11-37	10454/	(1	0	241-56K	Mfr	cw	114	10.4	0.6
9	37-12	0 104-6/	2 "	Vars	. 0-59	M	-	_	0.7	116
	-									
	1	1 22 20 2 2 2				,				
	ļ ·									
100	Boring #	Boring	742 .1	,					<u></u>	
	zoning n	Pit. Gro	ound surface elev 890, 4	ft.	Depth to limiting	g factor//_	2 In.		Cell App	lication Rate
Horizon		Dominant Colo		Texture	Structure	Consistence	Boundary	Roots		PD/ff
1	in.	Munsell	Qu. Sz. Cont. Color	+,	Gr. Sz. Sh.		·		*Eff#1	*Eff#2
2	11/2/1	104/1	None	1 hay	2956	Mtc	a5	24	0.6	0.8
2	77.57	7.54-4/4	/1	Cl	2-M-56K	Mfr	CW	14	0.4	0.6
5_	14-116	104-6/4	11	Vgrs	0-59	M		<u> </u>	0.7	1.6
		. 4								
		. :.								
,									,	
18 Bo	oring#	Boring Pit Grou	und surface elev. 889.2	ft.	Depth to limiting	factor 115	- in.			
Horizon	Depth	Dominant Color	Redox Description	Texture				THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN		cation Raie
	in.	Munsell	Qu. Sz. Cont. Color	TOXIGIO	Structure Gr. Sz. Sh.	Consistence I	Boundary	Roots	*Eff#1	*Eff#2
	0-11	10/13/2	NONE	hi	2-f-56K	Mfr	a5	24	0.6	0.8
2	11-27	7.54-44		01	2-MSBK	Mfr	(w)	14		0.6
3	27-115	1045614	- (vgr5	0-50	MI		- 1	2.7	1.6
		17:00			7					
	18.500								-	
						-				

The Department of Commerce is an equal opportunity service provider and employer. If you need assistance to access services or need material in an alternate format, please contact the department at 608-266-3151 or TTY 608-264-8777.

^{*} Effluent #1 = BOD $_{\rm s}$ > 30 \leq 220 mg/L and TSS >30 \leq 150 mg/L
* Effluent #2 = BOD $_{\rm s}$ \leq 30 mg/L and TSS \leq 30 mg/L

Wisconsin	Department of Commercial	ce
	Safety and Buildings	

SOIL EVALUATION REPORT

	1		0
Page_	L	of_	0

in accordance with Comm 85, Wis. Adm. Code

Attach complete site plan on paper not less than 8 1/2 x 11 inches in size, Plan must
include, but not limited to: vertical and horizontal reference point (BM), direction and
percent slope, scale or dimensions, north arrow, and location and distance to nearest road,

Parcel I.D.

Reviewed by

Date

Please print all information.

Personal Information	you provide ma	y be used for second	dary purposes (Privad	cy Law, s. 15.04 (1) (m)).		1
Property Owner Circle	C-Z	Plaza	LLC	Property Location Govt. Lot 5 W	1/4 DW 1/4 S25 T 5 N R	

Circle C-Z Plaza LLC	Govt. Lot	5 W	1/4/W 1/4 525 T 5 NR/7 E (OT)
Property Owner's Mailing Address	Lot.#	Block #	Subd, Name or CSM#
W1309 5,4860 COMMERCIAL Dr.			Proposed Land Division
City 1 State Zlp Code Phone Number	City	□ Vi	llage X Town Nearest Road

North Prairie	Wi. 53153	1(.)	Eagle	Soraque Ra
			0	

New Construction	Use: 🔀 Residential / Number of bedrooms Code derived design flow	rate GPD
Replacement	Public or commercial - Describe:	
Parent material	Flood Plain elevation if applicab	oleft.
General comments and recommendations:	The second second second second second	99 9

19 B	oring#	Boring Pit Grou	nd surface elev, 888. J	_ft	Depth to limiting	factor <u>120</u>	2_In.		Soil Appl	ication Rate
Horizon	Depth In.	Dominant Color Munsell	Redox Description Qu. Şz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	Roots	*Eff#1	*Eff#2
1	0-13	10/3/2	Nove	L	2-f-56K	Mfr	a5	2+	0.6	0.8
2		104-9/4	10	C1 V955.	2-M-56K	Mfr	cw_	14	0.7	1.6
	JK 120	101 -71			-)					
					 			·		·:.

Horizon	Depth	Pit Ground s	Redox Description	Texture	Structure	Consistence	Boundary	Roots	Soil Appll GF	DHE
Holizon	in.	Munsell .	Qu. Sz. Cont. Color		Gr. Sz. Sh.		5		*Eff#1	*Eff#2
1::	0-14	101-35	DONE	51	2- f-56K	nfr	a3	24	0.6	10
	1428	101/4/4	1(54	241-56K	Mfr	cu	IVF	0.4	0.6
3	24-83	1015-6/4		5	0-59	MI.	ca		0.7	1.6
-	83-120	10 Vr 6/4	11	V915	0-54	M			0.7	1,6
1	-			3						

		7
* Fffluent #1 = BOD. > 30	≤ 220 mg/L and TSS >30 ≤ 150 mg/L	′

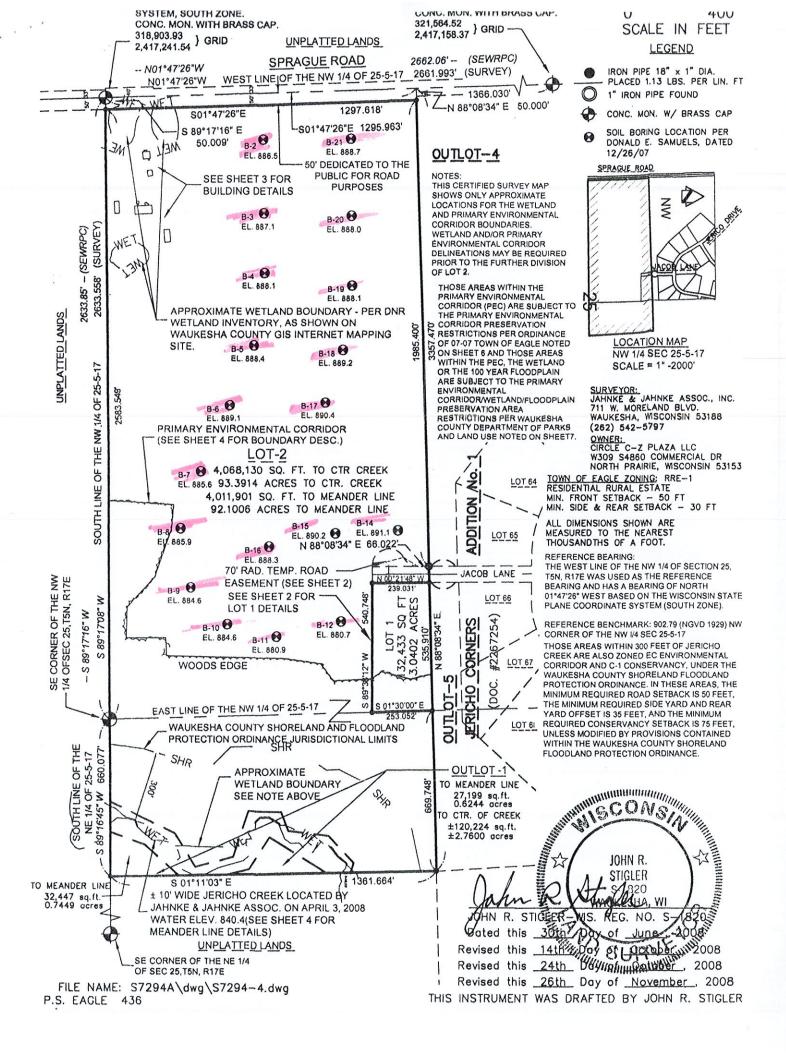
* Effluent #2 = BOD, \$30 mg/L and TSS \$30 mg/L

CST Name (Please Print)

Signature

DONALD E. SAMUELS

Date Evaluation Conducted 12/26/07


262-742-2743

Address S.55 W. 33749 HWY. ZZ NORTH PRAIRIE, WI 53153

	Pro	perty Own	er Circle	C-Z Plaza		et ss	v				
	2	Borin	g# Boring	Ground surface elev. 888		D#			. Р	age 8	01_8_
	Но	rizon D	Pepth Dominant	The state of the s	-	Depth to I	imiting factor	115	n	,	
	H		in. Munse	Qu. Sz. Cont. Co	on Tex	ture Struc Gr. Sz		ence Boun	dary Ro	Soil A	opplication Rat
	2		12 10yry	a love	5	2-4	shi Mf	1 25	-	/*Eff#	
- 1	7		30 754-4		54	2-MG	bk Mfr	(u	The second second	0.6	-
Ì		Dv	115 104-6,	/4 1/	Vgr	5.059	MI		- 10	- 0.7	0.6
t										1011	116
1			·		-	·	,				1.
						-					
Г]	Boring		<u> </u>	<u> </u>					
L		Boring #		Ground surface elev.	ft	Donth to the					
F	Horizo	1	h Dominant Co		Texture		Iting factor	-	-	Soll App	lication Rate
-	-	in.	Munsell	Qu. Sz. Cont. Color	, cauc	Gr. Sz. Si	1	Boundar	y Roots		*E##2
			-		L The	<u> Linker</u>	4 444		1.34		- E11#2
					-				1 .		
			T								
					 		-	-		ļ.,	
					1 1		-				
(· ' · ;			Boring	1	1, 2, 7,	1 15 14 1	<u> </u>				
-] _B	oring #		ound surface elev.	_ft. [Depth to limiting	g factor	ln.		*	
Hori	izon	Depth	Dominant Color	Redox Description	Texture	Structure	-			Soil ^oplica	
		in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.	Consistence	Boundary	Roots	GPD *Eff#1	*Eff#2
											
. :						1					
1											
	T										
		(1)								-	
	1							-			
	!										

* Effluent #1 = BOD_s > 30 ≤ 220 mg/L and TSS >30 ≤ 150 mg/L

* Effluent #2 = BOD_s ≤ 30 mg/L and TSS ≤ 30 mg/L The Department of Commerce is an equal opportunity service provider and employer. If you need assistance to access services or need material in an alternate format, please contact the department at 608-266-3151 or TTY 608-264-8777.

PRELIMINARY PLAT **TOWN OF EAGLE** RE: ROYAL AIRE ESTATES ®

COPYRIGHT NOTICE

THIS DRAWING IS THE PROPERTY OF JAHNIK AND JAHNIKE ASSOCIATES, LLC AND IS NOT TO BE USED FOR ANY PURPOSE OTHER THAN THE SPECIFIC PROJECT AND SIT NAMED HEREIM AND CANNOT BE REPRODUCE IN ANY MANNER WITHOUT THE EXPRESSED WRITTER PRINSSION FROM JAHNIKE AND JAHNIKE ASSOCIATES, LLC.

COPYRIGHT 2019 JAHNKE AND JAHNKE ASSOCIATES, LLC - ALL RIGHTS RESERVE

SCALE IN FEET

& JAHNKE ATES, LLC.

JAHNKE ASSOCIA

NOTE: The location and size of the underground structures and utilities shown hereon have been located to a reasonable degree of accuracy, but the Engineer and/or Surveyor does not guarantee their exact location or the location of others not shown. Contact Diggers Hotline, Inc., Etc.

(5) NOTE: CURRENT LONG TIME PROPERTY OWNER STATES THAT "THERE ARE NO DRAIN TILES ON THE PROPERTY"

- **ONOTE: JERICHO CREEK BISECTS LOTS 1 & 2. FOR ALL PURPOSES THE CREEK DOES NOT CREATE TWO

ONTE: DEVELOPER REQUESTS WAIVER OF SECTION 480.131 REGARDING PARK DEDICATION PAYMENT IN LIEU THERE OF.

SURVEYOR'S CERTIFICATE

WE, JAHNKE & JAHNKE ASSOCIATES, LLC. DO HEREBY CERTIFY THAT WE HAVE MADE AUKESHA
HIS SURVEY AND THAT THE INFORMATION AS SHOWN ON THE ABOVE FLAT OF SURVEY WIS.
IS TRUE AND CORRECT REPRESENTATION HEREFOR

NO SURVE THE SURV

JOHN R. STIGLER

01 OF 01

(4) - Test Pits See Breliminary PLAT)

Project Number: 00542160 September 23, 2020

Professional Service Industries, Inc. 821 Corporate Court

> Phone: (262) 521-2125 Fax: (262) 521-2471

Green Earth Realty/Camtec, Inc. W309 S4860 Commercial Drive North Prairie, WI

Attn:

Diane Zak

Owner/Developer dzak@green-geo.net

RE:

Subsurface Exploration, and Infiltration and Seasonal High Groundwater Evaluation

Sprague Road Parcel

Sprague Road

Town of Eagle, Wisconsin

Dear Ms. Zak:

INTRODUCTION

In accordance with your request, Professional Service Industries, Inc. (PSI) has performed subsurface exploration activities to provide an evaluation of the soil and groundwater conditions, and to estimate the seasonal high groundwater elevations within proposed stormwater management areas on the above referenced site. An electronic copy of this report is being provided via e-mail. Hard copies will be provided upon request.

AUTHORIZATION

Authorization to perform these activities was in the form of a signed copy of PSI Proposal No. 0054-319645, dated August 20, 2020 to Green Earth Realty/Camtec, Inc. The general conditions for the performance of the work were referenced in the proposal. This report has been prepared on behalf of, and exclusively for Green Earth Realty/Camtec, Inc. The information contained in this report may not be relied upon by any other parties without the express written consent of PSI, and acceptance by such parties of PSI' General Conditions.

PURPOSE

The purpose of the subsurface exploration was to evaluate the soil and groundwater conditions encountered at selected locations within two proposed stormwater areas on the Subject Property in regard to potential infiltration, and to estimate the seasonal high groundwater elevations at these locations. Infiltration testing was not proposed as part of this project. The general locations of the test pits were chosen by the client. The type and other design details of the planned stormwater management areas for the development were not provided to PSI at the time of report preparation.

SCOPE

The scope of services included a site reconnaissance, subsurface exploration, a determination of soil characteristics by field observations, and an evaluation and analysis of the data obtained. The scope of the infiltration evaluation consisted of the excavation of four (4) test pits, to depths of about 15 feet below grade.

The field work for classification of the subgrade soils in accordance with the WDNR Technical Standard 1002 "Site Evaluation for Stormwater Infiltration" guidelines was performed to provide information for use by the basin design personnel when considering requirements of Chapter NR151 of the Wisconsin Administrative Code. The design of the proposed management devices was beyond the scope of services for this project. The location, size, or other structure details were not provided; nor were planned elevations or final surface grades.

SITE AND PROJECT DESCRIPTION

The Subject Property consists of an approximate 90-acre vacant parcel, which is currently planted with soybeans. It has a property identification of EGLT1826998004. It is located west of Sprague Road and south of Jericho Drive in the Town of Eagle, Wisconsin and is part of the Southwest ¼ of the Northeast ¼ and part of the Southeast ¼ of the Northwest ¼ of Section 25, Township 25 North, Range 17 East, Waukesha County. The latitude and longitude near the proposed stormwater basins are generally 42.866 N and 88.439 W, respectively. It is understood that it is proposed to develop the Subject Property with a residential subdivision. It is also understood that two (2) stormwater management areas are proposed as part of the development and are generally planned to be constructed in the southern portion of the Subject Property.

SOIL SURVEY MAP REVIEW

The U.S. Department of Agriculture *Soil Survey of Waukesha and Milwaukee Counties, Wisconsin*, dated July 1971, was reviewed for the pedological classification of the soils within the area of the project. The soil survey indicates that the Warsaw Loam (WeA) and the Lorenzo Loam (LyB2) soil series are generally present in the location of the proposed stormwater management areas. These soil series reportedly have a seasonal high water table at a depth greater than 5 feet below grade.

FIELD EXPLORATION AND LABORATORY TESTING

Field Exploration

Four (4) test pits (referenced by the client's engineer as B-101 through B-104) were excavated for this project. B-101 and B-102 (EL. 880.7± and EL.879.16±, respectively) were within the apparent area of the proposed western stormwater management area, while B-103 and B-104 (EL. 885.0± and EL. 884.3±, respectively) were performed near the proposed eastern stormwater management area. The elevations of the test pits were provided by the client's engineer. These test pits were performed for the evaluation of the subsurface soils and to estimate the potential infiltration rates and seasonal highwater tables of the encountered subsurface soils in these locations on the Subject Property.

The test pits were extended to a predetermined depth of about 15 feet below grade (EL. 864.2± and EL. 865.7± in the western area and EL. 869.3± and EL. 870± in the eastern area). The test pits were located by PSI utilizing existing site features and based upon a site diagram furnished by the client's engineer. The soil test pits were excavated by a subcontractor using a backhoe. Representative soil samples were obtained from the backhoe bucket when color, texture and/or moisture changes were observed. The approximate locations of the test pits are shown on the enclosed Test Pit Location Plan.

All soil samples were visually classified by a geologist in general accordance with the USDA Soil Textural Classification System. Copies of the Test Pit Logs are enclosed in the Appendix. Upon completion of the exploration activities and the evaluation procedures, the test pits were backfilled to the ground surface with the excavated soils. It must be recognized that the backfill was placed without compaction and therefore soft subgrade conditions will likely be encountered in the areas of the test pits.

DESCRIPTION OF SUBSURFACE CONDITIONS

General

A description of the subsurface conditions encountered at the test pit locations is shown on the Test Pit Logs. The soil stratification shown on the logs represents the soil conditions in the actual test pit locations at the time of the exploration. The lines of demarcation shown on the logs represent approximate boundaries between the various soil classifications. It must be recognized that the soil descriptions are considered representative for the specific test locations, and that variations may occur between and beyond the test locations. Soil depths, topsoil and layer thicknesses, and demarcation lines can be utilized for preliminary budgeting, but their use in construction calculations should not be expected to yield exact and final quantities. A summary of the major soil profile components is described in the following paragraphs.

Soil Conditions

The soils encountered at the surface of B-101 and B-102 consist of about 12 inches (EL. 879.7± and EL. 878.2±) and about 7 inches (EL. 884.4±) at B-103 of dark brown sandy loam topsoil. However, about 9 inches (EL. 883.6±) of gravelly sandy loam topsoil was encountered at test pit B-104. The soils beneath the topsoil in B-101 through B-103 consist of brown to light yellowish brown loamy sand to gravelly loamy sand to depths of about 1.5 to 4 feet below grade (EL. 875.2± to EL. 883.5±). Deeper soils encountered in B-102 consist of dark yellowish brown to yellowish brown sand extending to a depth of about 7 feet below grade (EL. 872.2±). The soils beneath the sand in B-102, beneath the loamy sand in B-101 and B-103 and the gravelly sandy loam topsoil in B-104 consist of very gravelly to extremely gravelly sand to a depth of about 13 feet below grade (EL. 872±) in B-103 and termination depth of about 15 feet below grade (EL. 864.2± to EL. 869.3±) in the remaining test pits. However, an approximate 12-inch layer of yellowish brown sandy loam is present at a depth of about 10.5 feet below grade (EL. 873.8±) in B-104. Sand is encountered below the very gravelly sand in B-103 and extends to the termination depth of about 15 feet below grade (EL. 870±).

Groundwater Observations

Groundwater observations were made during and upon completion of the excavation activities. No free water

was observed within any of the test pits. The groundwater table in the area of B-101 and B-102 is anticipated to be at a depth greater than 15 feet below grade (EL. 865.7± and EL. 864.2±, respectively) and at a depth greater than 15 feet below grade (EL. 870± and EL. 869.3±) in the area of B-103 and B-104, respectively. Very moist soils were observed in the upper portion of the sandy loam encountered in TP-4 at about 10.5 feet below grade (EL. 873.8±). However, saturated soils were not encountered within the sand soils beneath these sandy loam soils.

It must be recognized that groundwater levels fluctuate with time due to variations in seasonal precipitation, lateral drainage conditions, and soil permeability characteristics.

ESTIMATED DESIGN INFILTRATION RATES

The subgrade soils encountered in the test pits were classified in general accordance with the USDA Soil Textural Classification System. Estimated infiltration rates for various soil types are shown. Table 2 of the <u>Site Evaluation for Stormwater Infiltration (1002)</u> document, published in the Wisconsin Department of Natural Resources Conservation Practice Standards, are shown below:

Soil Texture ¹	Design Infiltration Rate Without Measurement Inches/hour
Coarse sand or coarser (COS)	3.60
Loamy coarse sand (LCOS)	3.60
Sand (S)	3.60
Loamy sand (LS)	1.63
Sandy Ioam (SL)	0.50
Loam (L)	0.24
Silt loam (Si, L)	0.13
Sandy clay loam (SCL)	0.11
Clay loam (CL)	0.03
Silty Clay loam (Si, CL)	0.04
Sandy clay (SC)	0.04
Silty clay (Si, C)	0.07
Clay (C)	0.07

¹Use sandy loam design infiltration rates for fine sand, very fine sand, and loamy fine sand soil textures.

NR-151 guidelines indicate infiltration rates shall be based on the least permeable soil horizon within 5 feet of the bottom elevation of the proposed infiltration system. Careful consideration by the infiltration device designer is required regarding size, inflow volumes, retained volumes, and other factors.

If Waukesha County will be reviewing the stormwater basin design and data, the Waukesha County Stormwater Management and Erosion Control Ordinance (Section 14), which is regulated by the Land Resource Division (LRD), refers to infiltration rates expressed in Natural Resource Conservation Services (NRCS) soils tables in the Milwaukee and Waukesha Counties Soil Survey (dated July 1971). The LRD indicated that if no actual permeability testing is performed utilizing a double-ring infiltrometer or equivalent method, the estimated infiltration rates must be based on the stated infiltration rates in the NRCS Soil Survey, which are shown below:

Soil Texture	Range of Design Infiltration Rates Without Field Measurement (Inches/Hour)					
Sand and Gravel	>20.0					
Sand	>20.0					
Fine Sand	>20.0					
Gravelly Loam	6.3-20.0					
Loamy Sand	6.3-20.0					
Sandy Loam	2.0-6.3					
Silt Loam	0.63-2.0					
Silty Clay Loam	0.63-2.0					
Loam	0.63-2.0					
Clay Loam	0.63-2.0					
Sandy Clay Loam	0.63-2.0					
Silty Clay	0.06-0.2					
Clay	0.06-0.2					

CONCLUSIONS OF INFILTRATION EVALUATION

The material encountered beneath the sandy loam topsoil in these test pits generally consisted of layers of gravelly loamy sand, sand, and gravelly to very gravelly sand to the termination depth of about 15 feet below grade (EL. 864.2± to EL. 870±). The exception was the 12-inch layer of sandy loam encountered at 10.5 to 11.5 feet below grade (EL. 873.8± to EL. 872.8±) in B-104.

The sandy loam soils have an estimated infiltration rate of 0.5 inches per hour, based on Table 2 above. This infiltration rate is less than 0.6 inches per hour. Based upon this and the classification of these soils, they may be exempt from the infiltration requirements of NR151.124. However, field verification testing of the actual in-situ infiltration rate for these materials is required per NR151.124 under NR151.124(4)(c)1 and under Step C5 of the Site Evaluation for Stormwater Infiltration document, to confirm they are exempt from the infiltration requirements. Utilizing the NRCS Soil Survey infiltration rates, the sandy loam soils may have a rate ranging from 2.0 to 6.3 inches per hour.

The loamy sand soils and sand soils have estimated infiltration rates of 1.63 and 3.6 inches per hour, respectively, based on Table 2 above. These infiltration rates are greater than 0.6 inches per hour. Based upon this and the classification of these soils, they are not exempt from the infiltration requirements of NR151.124 under NR151.124(4)(6)(2). Utilizing the NRCS Soil Survey infiltration rates, the loamy sand soils may have a rate ranging from 6.3 to 20 inches per hour, while the sand soils may have a rate greater than 20 inches per hour.

Dependent upon the proposed bottom elevations of the planned basins, it must be recognized that the evaluated areas and other areas of the site may be exempt or excluded from the infiltration requirements of NR151.124

under other provisions, such as defined in NR151.002(14r) due to the lack of a layer of sufficient thickness containing soils with sufficient fines content between the bottom of the basin and the groundwater. This layer of sufficient thickness containing soils with sufficient fines content is denoted by NR151.124(4)(b) as a "filtering layer". As indicated in NR151.002(14r), a "filtering layer" is defined as a layer at least 3 feet thick, with at least 20 percent fines; or at least 5 feet thick, with at least 10 percent fines.

It must also be recognized that other areas of the site may be exempt or excluded from the infiltration requirements of NR151.124 under other provisions (dependent upon the final bottom elevation), such as NR151.124(4)(b), due to insufficient separation distance between the bottom of the basin and the seasonal high groundwater.

GENERAL STORMWATER MANAGEMENT AREA RECOMMENDATIONS

The preceding infiltration rate estimates are intended only for use in preliminary planning. Additional test pits in other areas of the basins or other areas of the site would be recommended to allow more detailed evaluation of subsurface conditions, including groundwater levels, and to provide more representative infiltration rates to be used in the final basin design. This may also include the performance of double ring infiltrometer testing. It is recommended that the bottom of the stormwater management area be observed by qualified geotechnical personnel at the time of construction to verify the soil types. The type of basin and intended use, such as being "wet" or "dry", must be carefully considered when evaluating infiltration rates.

Care must be exercised in construction of basements in the vicinity of stormwater management basins. If basement floors are below the elevation of basin bottoms, lateral migration of water may result in increased sump pump activity. Also, granular backfill in utility trenches in the vicinity of stormwater management basins can act as conduits and carry water from basins into nearby basements. Therefore, consideration should be given to construction of clay collars around utility lines to prevent movement of water through the free draining backfill. Additionally, it must be recognized that some local building codes or municipal regulations require that basement floor elevations be a specified distance above the water level of nearby stormwater basins.

If the proposed basins are planned to infiltrate collected stormwater, the performance of such devices could be affected by other factors such as the existing soil density and compaction by construction equipment. It is recommended that construction equipment traffic to the bottom of the basins be minimized to reduce the potential for soil densification. A maintenance program must be developed to address the removal of sediment and or organic materials should they accumulate. Additionally, it is recommended that the basin design be performed by an experienced civil engineering firm, and that thorough review of applicable codes (especially NR151) and regulations be performed. Proper design and construction of sidewalls and berms will also be essential for proper device performance.

GENERAL COMMENTS

This limited evaluation has been prepared on the basis of the subsurface conditions encountered in the test pits discussed above. Preliminary recommendations presented herein are based on available soil information and test data collected. This study has been conducted in the manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings and opinions contained herein have been promulgated in accordance with general accepted practices in the fields of soil mechanics

and engineering geology. No other representations, expressed or applied, and no warranty or guarantee is included or intended in this report.

After you have had the opportunity of reading this report, please call at any time with any questions or comments you may have. PSI appreciates the opportunity to be of service on this project.

Larry Raether, P.E.

Department Manager

Environmental Services

Sincerely,

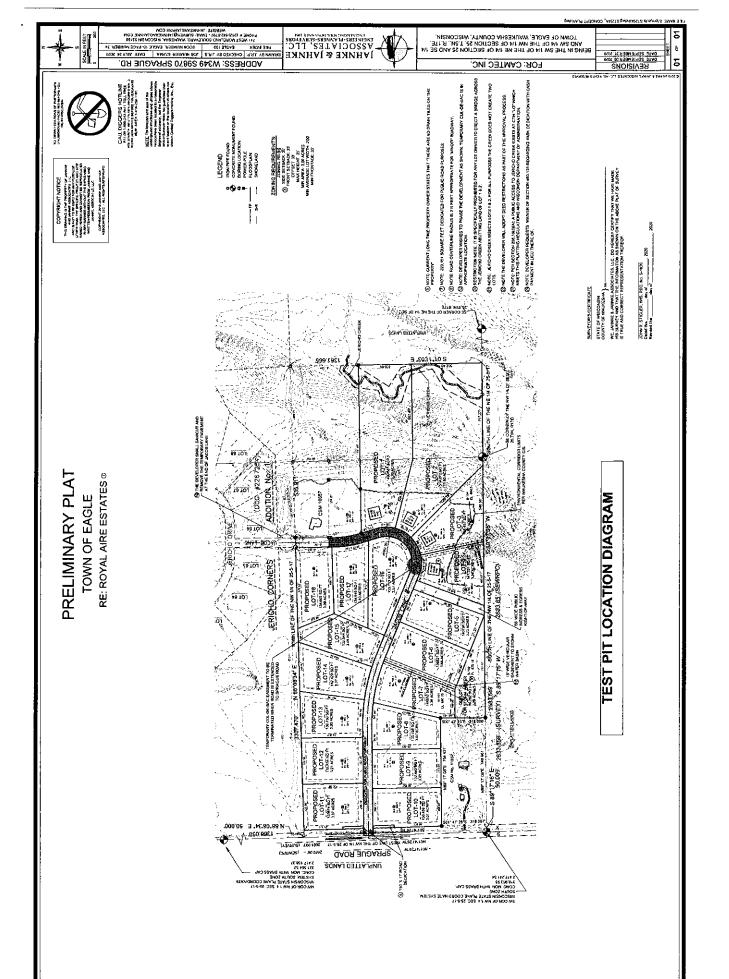
PROFESSIONAL SERVICE INDUSTRIES, INC.

Patrick J. Patterson, P.E., P.G.

Senior Engineer

Environmental Services

Certified Soil Tester #41631


Attachments: Test Pit Location Diagram

Test Pit Logs DSPS Form WETS Table

www.intertek.com/building

ATTACHMENTS

Project: Sprague Road Parcel

Project No.: 00542160

Location: Sprague Road

Town of Eagle, Wisconsin

	th Below e/Elev. (ft)	VISUAL SOIL CLASSIFICATION	Sample	N (bpf)	Qp (tof)	Qu	MC	PID (nnm)	Remarks
Januac	er Ere v. (it)	Ground Surface Elevation: 880.7 ±	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
1	-	10YR, 3/3, Dark Brown, SANDY LOAM, 2. sbk, f, mfr-dry	1-HS						
'-	879.7	10YR, 5/4, Yellowish Brown, GRAVELLY LOAMY SAND, 2, abk, f, mvfr-moist	2-HS						
2	878.7	10YR, 6/3, Pale Brown, VERY GRAVELLY COARSE SAND, 0, sg, ml -moist	3-HS						
3_	877.7	10YR, 6/3, Pale Brown, MEDIUM SAND, 1, pl, thin, mvfr -moist	4-HS						
4	-				:				
4—	876.7 —	10YR, 6/3, Pale Brown, VERY GRAVELLY COARSE SAND, 0,	E 116						
5 -	875.7	sg, ml -moist	5-H\$						
6	874.7			<u></u>					
-	7,7,7								
7—	873.7				<u> </u> 				
8-	872.7								
9—	871.7								
10 —	870.7 -	10YR, 6/4, Light Yellowish Brown, VERY GRAVELLY MEDIUM SAND, 0, sg, ml -moist	6-HS						
11 -	- 869.7 -								
"]	- 609.7								
12 -	868.7								
13 -	867.7							<u> </u>	
14	866.7 -	10YR, 5/4, Yellowish Brown, SAND, 0, sg, ml -moist	7-HS						
- 15	- 865.7								
		End of Test Pit: 15'							
otes:									
/ater Le	evel / Caving	Observations:	Additiona	I Comn	nents:				
		excavation: none							

Tel (262) 521-2125 Fax (262) 521-2471 Intertek.com/building

TEST PIT LOG: B-102

Project: Sprague Road Parcel

Project No.: 00542160

Location: Sprague Road

Town of Eagle, Wisconsin

	Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Remarks
Surface	/Elev. (ft)	Ground Surface Elevation: 879.2 ±	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	Remarks
1_	878.2	10YR, 3/3, Dark Brown, SANDY LOAM, 2, sbk, f, mfr -dry	1-HS						•
2—	877.2 —	7.5YR, 4/6, Strong Brown, LOAMY SAND, 2, abk, f, mvfr -moist	2-HS						- - -
3—	876.2 -	7.5YR, 4/6, Strong Brown, VERY GRAVELLY SAND, 2, abk, f, mvfr -moist	3-HS						-
4-	875.2	10YR, 4/4, Dark Yellowish Brown, COARSE SAND, 0, sg, ml - moist	4-HS			-			-
6—	873.2 —	10YR, 5/4, Yellowish Brown, MEDIUM SAND, 0, sg, ml -moist	5-HS			***			- - -
8 — 9 — 10 — 11 ~ - 12 — 13 — 14 — - 14 — -	871.2 — 870.2 — 869.2 — 868.2 — 867.2 — 865.2 —	10YR, 6/4, Light Yellowish Brown, VERY GRAVELLY COARSE SAND, 0, sg, ml -moist	6-HS						-
		End of Test Pit: 15'						<u></u>	
Notes:				·					
Water	rel / Caving Level _{During E} Level _{Upon Co}	xcavation: none	Additional	Comm	ents:			-	

Tel (262) 521-2125 Fax (262) 521-2471 intertek.com/building

TEST PIT LOG: B-103

Project: Sprague Road Parcel

Project No.: 00542160

Location: Sprague Road

Town of Eagle, Wisconsin

	th Below e/Elev. (ft)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 885.0 ±	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	PID (ppm)	Remarks
		10YR, 3/3, Dark Brown, SANDY LOAM, 2, sbk, f, mfr -dry	1-HS						
1—	884.0	7.5YR, 4/6, Strong Brown, LOAMY SAND, 2, abk, f, mvfr -moist	2-HS		***				
2—	883.0								
3	882.0 —								
4-	881.0	10YR, 6/4, Light Yelllowish Brown, VERY GRAVELLY COARSE SAND, 0, sg, ml -moist	3-HS						
5 —	880.0								
6—	879.0								
7—	878.0								
8—	877.0								
10 —	875.0 -	10YR, 5/4, Yellowish Brown, VERY GRAVELLY COARSE SAND, 0, sg, ml -moist	4-HS						
11	874.0								
12	873.0								
13	872.0		-						
14 -	871.0	10YR, 5/4, Yellowish Brown, VERY GRAVELLY MEDIUM SAND, 0, sg, ml -moist	5-HS						
15	870.0]	
		End of Test Pit: 15'							
otes:									
Wate	evel / Caving or Level During E or Level Upon Co	Observations: xcavation: none omoletion: none	Additiona	I Comm	nents:			<u></u>	

Tel (262) 521-2125 Fax (262) 521-2471 intertek.com/building

TEST PIT LOG: B-104

Project: Sprague Road Parcel

Project No.: 00542160

Location: Sprague Road

Town of Eagle, Wisconsin

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	МС	PID	
	ce/Elev. (ft)	Ground Surface Elevation: 884.3 ±	No.	(bpf)	11 "	(tsf)	(%)	(ppm)	Remarks
		10YR, 3/3, Dark Brown, GRAVELLY SANDY LOAM, 2, sbk, f, mfr -dry	1-HS						
1	883.3				<u> </u>		 		_
-	_								
2—	882.3 —								_
-	_								•
3	881.3 —								_
4	990.2								•
,	880.3	10YR, 6/4, Light Yelllowish Brown, EXTREMELY GRAVELLY COARSE SAND, 0, sg, ml -moist	2-HS		_				_
5 —	879.3	OOTHOE OFFICE, U, Sg, IIII HIDIST		i					,
4	_								
6—	878.3								_
-	-								-
7—	877.3—								_
, 1	670.0								-
8—	876.3 —								_
9—	875.3 -	10YR, 6/4, Light Yellowish Brown, VERY GRAVELLY COARSE SAND, 0, sg, ml -moist	3-HS						-
10 —	874.3 -	10YR, 5/4, Yellowish Brown, GRAVELLY MEDIUM SAND, 0, sg, ml -moist	4-HS						-
11 -	873.3	10YR, 5/4, Yellowish Brown, SANDY LOAM, 1, pl, thin, mvfr- moist to very moist	5-HS						-
12	872.3								Ţ
-	_								-
13 -	871.3 -	10YR, 5/3, Brown, VERY GRAVELLY COARSE SAND, 0, sg, ml -moist	6-HS						-
14 -	870.3					ı			-
15	869.3								
-4		End of Test Pit: 15'							
otes:									
		Observations:	Additional	Comm	ents:				
Wate	er Level _{During E} er Level _{Upon Co}	xxxvation: none							
		epresent approximate boundaries between soil types. Variations n							

SOIL EVALUATION - STORM

Page 1 of 2

In accordance with SPS 382.365 & 385, Wis. Adm. Code and WDNR Standard 1002

Attach o	complete	e site plan on p	aper not less that	8 1/2 x	11 inch	es in size. Pla	n must	County		
			ical and horizonta					Waukesh	a	İ
percent	slope,	scale or dimens	sions, north arrow	, and Bl	M refere	nced to neare	est road.	Parcel I.	D.	**************************************
								EGLT182	6996004	
		Please n	rint all informat	tion.				Reviewe		
		r rough		.,,.				Dale		
Perso	nal inform	alion vou provide n	ay be used for second	lary ourne	ses (Privac	v Law. s. 15.04 (1) (m)].			
Property				1	Property I.		7.1			
						SW1/4 of	SE 1/4 of			
Camtec,	Inc.				Govt. Lot	NE1/4	NW 1/4	S 25	T 25 N	R 17 E
Property	Owner's N	failing Address			Lot#	Block #	Subd. Na	ne or CSI	√ #	1
City	4860 Cor	nmercial Drive State Zi	Code Phone Number	<u>. </u>	C) City	D Village 0	csm #119 I Town		earest Ro	od
Gity		3(4)6 21	Code Frome Manne	31	ы слу	C VHage &	2 10411	,,,	calest (m)	ad.
North Pr	airie	WI 5	3153	ŀ	Eagle			Sprague	Road	
		1.2								
Drainage a	rea	B	sq. It. D acres	1	Hydraulic A	upplication Test Me	thod:	Soll Moist	ure	
Optional:								Date of S	oil Borings:	: August 31, 2020
Test Site S	Suitable for	(check all that apply)		⊠ Mo	rphological Evalua	tion			
🗆 Irrigatio	on	☐ Sioretention tre	nch El Trench(es)					USDA-NF	CS WETS	Value: 13
				- 1	□ Do	uble Ring Intiltrome	ter			☐ Dry ≈1;
□ Rain G	arden	☐ Grassed swale	☐ Reuse	1						⊠ Normal = 2;
				1	CI OH	ner (specify)				☐ Wet = 3.
C) Inlittret	lion trench	☐ SDS (> 15' wid	a) 🛘 Other							
<u> </u>				J			 	L		
10	bs. #	☐ Boring	B-101							
			round surface e'evallor	The second second	-	Elevation of lin				ادعت تستند
Horizon	Depth	Dominant Color Munsell	Redox Description Qu. Sz. Com. Color	Textura	Strecture Gr. Sz. S		Boundary	% Rock Frag.	% Pines	Hydrautic App. Rate
	in		Qu. 32. Odia. Osoi	 	···					Inches/Hr.
1	0-12	10YR, 3/3		şi.	21,sbk		<u> </u>	<15		0.5 (2-6.3)
2	12-18	10YR, 5/4	 	yr's	2,f,a5k	mvlc	di	>15		1.63 (6.3-20)
3	18-30	10YR, 6/3	***************************************	vygics	0,85	ni ni	C'W	>35		3.6 (>20)
4	30-36	10YR, 6/3		ms	1,thin,p	1 mvfr	cw	<15		3.6 (>20)
5	36-72	10YR, 6/3	·	vygrcs	0,sg	ml	gí	>35		3.6 (>20)
6	72-156	10YR, 6/4		vygrms	0,sg	ml	gi	>35		3.6 (>20)
7	156-180	10YR, 5/4		s	0,sg	ml	gi	<15		3.6 (>20)
		,		1						
				 -		+	-	 		
Соттепіз	<u> </u>			<u> </u>	<u> </u>	_1		ł	Li	
	·		·							
		☐ Boring	B-102							
2 0)bs. #		round surface elevation	n 879.16÷		Elevation of life	nitino facto	<864.2±		
Horizon	Depth	Dominant Color	Redox Description		Structur				% Fines	Hydraulic App. Rate
	ln.	Munsell	Qu. Sz. Cont. Color		Gr. \$2. \$		1	Frag.		Inches/Hr.
1	0-12	10YR, 3/3		la	2,f,sbk	mfr	T	<15		0.5 (2-6.3)
2	12-36	7.5YR, 4/6		16	2,f,abk		di	<15	1	1.63 (6.3-20)
3	36-48	7.5YP, 4/6		vygrs	2,f,abk		cw	>35	1	3.6 (>20)
			<u>,, , , , , , , , , , , , , , , , , , ,</u>					 	 	3.6 (>20)
4	48-60	10YR, 4/4		CS	0,sg	m!	CW	<15		<u> </u>
5	60-84	10YR, 5/4		ms	0,sg	ml ml	91	<15	ļ	3.6 (>20)
6	84-180	10YR, 6/4		vygrcs	0.sg	mi	gi	>35	1	3.6 (>20)
									<u> </u>	
Comments	<u>;</u>									
CST/PS	S Name	(Please Print)		Signatu	ير ممسر ١٢٩	1 Millian		CST/PS	SS Numb	Der T
1	J. Patters			- Sugar		All the		41631		
Address			·····		Dale Ev	aluation Condu	cted		one Num	ber
1		ourt, Suite 102. V	Vaukesha, WI 5318	9	7 7			262 52		

Horizon	Depth		round surface elevation			Elevation of firm			
1 100115501	in.	Dominant Color Munseil	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock % Fines	Hydraulic App. Rate
	1		GG. OL. CORE, GGIOI		ui, et, ei),			Frag.	Inches/Hr.
1	0-7	10YP, 3/3	······	sl	2,f,sbk	mir		<15	0.5 (2-6.3)
2	7-18	7.5YR, 4/6		ls	2,f,abk	mvir	di	<15	1.63 (6.3-20)
3	18-84	10YR, 6/4		vygrcs	0,sg	m)	cw	>35	3.6 (>20)
4	84-156	10YR, 5/4		vygrcs	0,sg	m)	cw	>35	3.6 (>20)
5	156-180	10YR, 5/4		vygrms	0,sg	ml	gi	>35	3.6 (>20)
									· · · · · · · · · · · · · · · · · · ·
omments					f				

	Obs. #	☐ Boring 図 Pit	B-104 Ground surface elevation	1 884.3±		Elevation of lin	nilina iactor	873.8+		
Horizor	n Deptin in,	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture		Consistence			% Fines	Hydraulic App. Rate
1	0.9	10YR, 3/3		grsi	2,f,sbk					Inches/Hr.
2	9-96	10YR, 6/4		expres	2,1,5DX 0,5g	mfr		≺15		0.5 (2-6.3)
3	96-114	10YR, 6/4		vygrcs	0,sg	mi mi	đi	>60		3.6 (>20)
4	114-126	10YR, 5/4		grms	0,sg	mi	CW	>35 >15		3.6 (>20)
5	126-136	10YR, 5/4		sl	1,thin,pl	myfr	as	<15		3.6 (>20) 0.5 (2-6.3)
6	138-180	10YR, 5/3		vygrcs	0,sg	ml	as	>35		3.6 (>20)
										0.0 (>20)
omment	s:						L	1		

Use: "30% chance will have more/less than X" for "3yrs.in 10 less/more than"

	Long-Term F	Long-Term Rainfall Records	qs					
Month	3 yrs. In 10 less than	Average	3 yrs. In 10 more than	Current Year Rainfall	Condition, dry, wet, normal	Condition Value	Month Weght Value	Product of previous two
1st prior April month	2.81	3.94	4.66	5.27	tew	E	æ	6
2nd prior March month	3.06	4.91	5.93	2.82	Ĺр		2	2
February	3.9	4.67	5.51	4.68	normal		1	2
							Sum	13

Note: If sum is

6 to 9 Then prior period has been drier than normal

10 to 14 Then period has been normal

15 to 18 Then period has been wetter than normal

Condition Value:

Dry (D)

Normal (N) 2

Wet (W)) 3

Note: Long-Term Records and rainfall from Oconomowoc WWTP station.